Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/4917
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKempe, Steffen-
dc.date.accessioned2018-09-24T16:20:56Z-
dc.date.available2018-09-24T16:20:56Z-
dc.date.issued2008-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/10959-
dc.identifier.urihttp://dx.doi.org/10.25673/4917-
dc.description.statementofresponsibilityvon Steffen Kempe-
dc.format.extentOnline-Ressource (PDF-Datei: 179 S., 4842 KB)-
dc.language.isoger-
dc.publisherUniversitätsbibliothek-
dc.publisherOtto von Guericke University Library, Magdeburg, Germany-
dc.subjectData Mining-
dc.subjectDatenstrom-
dc.subjectMustererkennung-
dc.subject.ddc006-
dc.titleHäufige Muster in zeitbezogenen Daten-
dcterms.typeHochschulschrift-
dc.typeDoctoral Thesis-
dc.identifier.urnurn:nbn:de:101:1-201012103727-
local.publisher.universityOrInstitutionOtto-von-Guericke-Universität Magdeburg-
local.openaccesstrue-
Appears in Collections:Fakultät für Informatik

Files in This Item:
File Description SizeFormat 
kempe.pdf4.84 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.