Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/108764
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Abels, Helmut | - |
dc.contributor.author | Rauchecker, Maximilian | - |
dc.contributor.author | Wilke, Mathias | - |
dc.date.accessioned | 2023-07-03T12:25:24Z | - |
dc.date.available | 2023-07-03T12:25:24Z | - |
dc.date.issued | 2021 | - |
dc.identifier.uri | https://opendata.uni-halle.de//handle/1981185920/110719 | - |
dc.identifier.uri | http://dx.doi.org/10.25673/108764 | - |
dc.description.abstract | We show local well-posedness for a Mullins-Sekerka system with ninety degree angle boundary contact. We will describe the motion of the moving interface by a height function over a fixed reference surface. Using the theory of maximal regularity together with a linearization of the equations and a localization argument we will prove well-posedness of the full nonlinear problem via the contraction mapping principle. Here one difficulty lies in choosing the right space for the Neumann trace of the height function and showing maximal Lp−Lq-regularity for the linear problem. In the second part we show that solutions starting close to certain equilibria exist globally in time, are stable, and converge to an equilibrium solution at an exponential rate. | eng |
dc.language.iso | eng | - |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject.ddc | 510 | - |
dc.title | Well-posedness and qualitative behaviour of the Mullins-Sekerka problem with ninety-degree angle boundary contact | eng |
dc.type | Article | - |
local.versionType | publishedVersion | - |
local.bibliographicCitation.journaltitle | Mathematische Annalen | - |
local.bibliographicCitation.volume | 381 | - |
local.bibliographicCitation.pagestart | 363 | - |
local.bibliographicCitation.pageend | 403 | - |
local.bibliographicCitation.publishername | Springer | - |
local.bibliographicCitation.publisherplace | Berlin | - |
local.bibliographicCitation.doi | 10.1007/s00208-020-02007-3 | - |
local.openaccess | true | - |
dc.identifier.ppn | 1851463003 | - |
local.bibliographicCitation.year | 2021 | - |
cbs.sru.importDate | 2023-07-03T12:24:54Z | - |
local.bibliographicCitation | Enthalten in Mathematische Annalen - Berlin : Springer, 1869 | - |
local.accessrights.dnb | free | - |
Appears in Collections: | Open Access Publikationen der MLU |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
s00208-020-02007-3.pdf | 594.09 kB | Adobe PDF | View/Open |