Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/108804
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGillmeister, Konrad-
dc.contributor.authorGolež, Denis-
dc.contributor.authorChiang, Cheng-Tien-
dc.contributor.authorBittner, Nikolaj-
dc.contributor.authorPavlyukh, Yaroslav-
dc.contributor.authorBerakdar, Jamal-
dc.contributor.authorWerner, Philipp-
dc.contributor.authorWiddra, Wolf-
dc.date.accessioned2023-07-04T11:37:54Z-
dc.date.available2023-07-04T11:37:54Z-
dc.date.issued2020-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/110759-
dc.identifier.urihttp://dx.doi.org/10.25673/108804-
dc.description.abstractCharge excitations across an electronic band gap play an important role in opto-electronics and light harvesting. In contrast to conventional semiconductors, studies of above-band-gap photoexcitations in strongly correlated materials are still in their infancy. Here we reveal the ultrafast dynamics controlled by Hund’s physics in strongly correlated photoexcited NiO. By combining time-resolved two-photon photoemission experiments with state-of-the-art numerical calculations, an ultrafast (≲10 fs) relaxation due to Hund excitations and related photo-induced in-gap states are identified. Remarkably, the weight of these in-gap states displays long-lived coherent THz oscillations up to 2 ps at low temperature. The frequency of these oscillations corresponds to the strength of the antiferromagnetic superexchange interaction in NiO and their lifetime vanishes slightly above the Néel temperature. Numerical simulations of a two-band t-J model reveal that the THz oscillations originate from the interplay between local many-body excitations and antiferromagnetic spin correlations.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc530-
dc.titleUltrafast coupled charge and spin dynamics in strongly correlated NiOeng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleNature Communications-
local.bibliographicCitation.volume11-
local.bibliographicCitation.issue4095-
local.bibliographicCitation.publishernameNature Publishing Group UK-
local.bibliographicCitation.publisherplace[London]-
local.bibliographicCitation.doi10.1038/s41467-020-17925-8-
local.subject.keywordsMagnetic properties and materials, Surfaces, interfaces and thin films-
local.openaccesstrue-
dc.identifier.ppn1733741658-
local.bibliographicCitation.year2020-
cbs.sru.importDate2023-07-04T11:37:15Z-
local.bibliographicCitationEnthalten in Nature Communications - [London] : Nature Publishing Group UK, 2010-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
s41467-020-17925-8.pdf1.82 MBAdobe PDFThumbnail
View/Open