Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/111736
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOtto, Björn-
dc.contributor.authorGröpler, Robin-
dc.contributor.authorMeinecke, Karsten-
dc.contributor.authorKleinert, Tobias-
dc.date.accessioned2023-11-21T10:46:18Z-
dc.date.available2023-11-21T10:46:18Z-
dc.date.issued2023-
dc.date.submitted2023-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/113693-
dc.identifier.urihttp://dx.doi.org/10.25673/111736-
dc.description.abstractSoftware testing enables the assessment and assurance of software quality. However, writing test cases manually is time-consuming and error-prone. To avoid this, test cases can be generated automatically using Model-based Testing (MBT). MBT derives tests from a test model like a finite state machine (FSM). Such FSMs are often part of specifications, but unfortunately, often only provided as image and not in machine-readable form. Therefore, in this work we present an approach to extract machine-readable representations of FSMs from images automatically using Neural Networks. Additionally, we evaluate the applicability of our approach using a real-world specification to generate test cases from it.eng
dc.language.isoeng-
dc.relation.urihttps://opendata.uni-halle.de//handle/1981185920/113590-
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/-
dc.subjectSoftware testingeng
dc.subjectModel-based Testing (MBT)eng
dc.subjectFinite state machine (FSM)eng
dc.subjectTest case-
dc.subject.ddc621.3.-
dc.titleFrom specification to test cases : a state-machine-based approach using image recognitioneng
dc.typeConference Object-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-1136931-
dc.relation.references10.25673/111633-
local.versionTypepublishedVersion-
local.openaccesstrue-
dc.identifier.ppn1870367898-
cbs.publication.displayform2023-
local.bibliographicCitation.year2023-
cbs.sru.importDate2023-11-15T13:45:05Z-
local.bibliographicCitationEnthalten in Kommunikation in der Automation - Magdeburg : Universitätsbibliothek, 2023-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Elektrotechnik und Informationstechnik (OA)

Files in This Item:
File Description SizeFormat 
13_KommA2023_P-5_Otto et al..pdfPaper314.28 kBAdobe PDFThumbnail
View/Open