Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/113748
Title: Investigations of Arabidopsis thaliana WHIRLY1 function in early seedling development
Author(s): Nguyen Thuy LinhLook up in the Integrated Authority File of the German National Library
Referee(s): Humbeck, KlausLook up in the Integrated Authority File of the German National Library
Laubinger, SaschaLook up in the Integrated Authority File of the German National Library
Krupinska, KarinLook up in the Integrated Authority File of the German National Library
Granting Institution: Martin-Luther-University Halle-Wittenberg
Issue Date: 2023
Extent: 1 Online-Ressource (XII, 87 Seiten, Seite XIII-LXXXV)
Type: HochschulschriftLook up in the Integrated Authority File of the German National Library
Type: PhDThesis
Exam Date: 2023-12-12
Language: English
URN: urn:nbn:de:gbv:3:4-1981185920-1157047
Abstract: The present work focuses on the Arabidopsis thaliana WHIRLY1 (AtWHY1), which belongs to the multifaceted plant-specific single-stranded-DNA binding protein family WHIRLY. Studies on CRISPR/Cas9 AtWHY1 knock-out lines showed that, though no obvious phenotype was observed, loss-of-function of AtWHY1 affected seedling transcriptome, in both gene transcription and alternative splicing. Specifically, AtWHY1 regulates aliphatic glucosinolate biosynthetic genes, and therefore AtWHY1 knock-out seedlings contained a significantly lower amount of these metabolites compared to the wildtype. Furthermore, analysis of oxidative-stress-associated transcriptomes revealed a coordinated tuning in both transcriptional and post-transcriptional layers of gene regulation. Loss of AtWHY1 influenced the time-scale and the magnitude of gene expression changes upon the stress. Interestingly, alternative splicing pattern in the mutant was significantly affected, as different variants and/or genes were processed.
Diese Arbeit konzentriert sich auf das WHIRLY1 (AtWHY1) von Arabidopsis thaliana, das zu der pflanzenspezifischen ss-DNA-bindenden Proteinfamilie WHIRLY gehört. Untersuchungen an CRISPR/Cas9-vermittelten Knock-out-Linien zeigten, dass das Fehlen von AtWHY1 das Transkriptom sowohl bei der Gentranskription als auch beim alternativen Spleißen beeinflusst, obwohl kein offensichtlicher Phänotyp beachtet wurde. Insbesondere reguliert AtWHY1 die Gene für die Biosynthese aliphatischer Glucosinolate, weshalb AtWHY1-Knock-out-Sämlinge eine deutlich geringere Menge dieser Metabolite als Wildtyp enthielten. Außerdem ergab die Analyse der mit oxidativem Stress assoziierten Transkriptome eine koordinierte Abstimmung sowohl der transkriptionellen als auch der posttranskriptionellen Ebenen der Genregulation. Das Fehlen von WHY1 beeinflusste den Beginn und die Intensität der Expressionsveränderungen bei Stress. Interessanterweise war das alternative Spleißmuster in der Mutante erheblich beeinträchtigt.
URI: https://opendata.uni-halle.de//handle/1981185920/115704
http://dx.doi.org/10.25673/113748
Open Access: Open access publication
License: (CC BY-NC-SA 4.0) Creative Commons Attribution NonCommercial ShareAlike 4.0(CC BY-NC-SA 4.0) Creative Commons Attribution NonCommercial ShareAlike 4.0
Appears in Collections:Interne-Einreichungen

Files in This Item:
File Description SizeFormat 
Dissertation_MLU_2024_NguyenLinh.pdf8.27 MBAdobe PDFThumbnail
View/Open