Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/113749
Titel: Modeling, optimization, and predictive control for metabolic cybergenetics
Autor(en): Espinel Ríos, Sebastián
Gutachter: Klamt, SteffenIn der Gemeinsamen Normdatei der DNB nachschlagen
Körperschaft: Otto-von-Guericke-Universität Magdeburg, Fakultät für Verfahrens- und Systemtechnik
Erscheinungsdatum: 2023
Umfang: iv, 92 Seiten
Typ: HochschulschriftIn der Gemeinsamen Normdatei der DNB nachschlagen
Art: Dissertation
Tag der Verteidigung: 2023
Sprache: Englisch
URN: urn:nbn:de:gbv:ma9:1-1981185920-1157056
Schlagwörter: Biomathematik
Biokybernetik
Metabolic cybergenetics
Zusammenfassung: This thesis outlines a framework for metabolic cybergenetics that employs computational methods to control gene expression of metabolism-relevant enzymes via external signals. This enables dynamic metabolic engineering through the modulation of intracellular metabolic fluxes. The framework systematically integrates concepts from synthetic biology, metabolic engineering, (machine-learning-supported) dynamic modeling, model-based optimization, predictive control, and estimation. The focus is on batch and fed-batch processes, although the framework can be extended to continuous processes. Two modeling approaches are considered: constraint-based dynamic modeling and (Gaussian-process-supported) quasi-unstructured/unsegregated kinetic modeling. The models are used for model-based optimization, i.e., to determine optimal inputs for maximizing production, including, e.g., cybergenetic inputs, feed rates, and initial concentrations. Repeatedly solving model-based optimization problems -model predictive control- can address uncertainties such as model-plant mismatch and disturbances. Model-based control requires information about the current system states. Real-time process monitoring of relevant states such as biomass components can be achieved with soft sensors, e.g., based on full information estimation. The applicability of the framework is outlined considering a case study dealing with enforced adenosine triphosphate (ATP) turnover for enhanced product yield or productivity, focusing on the anaerobic lactate fermentation by Escherichia coli. The ATP turnover is manipulated by modulating the expression of the ATPase (F1-subunit), an enzyme catalyzing the hydrolysis of ATP, using an optogenetic approach. That is, light is used as a control input to fine-tune ATPase expression. Experimental validation involves open-loop control in batch, employing quasi-unstructured/unsegregated kinetic modeling. The presented framework allows full exploitation of all available input degrees of freedom while counteracting disturbances and uncertain model information. It opens the door to advanced biotechnological applications involving dynamic metabolic control; furthermore, its model-based nature can enable cost-effective process development, robust operation, and flexibility in biotechnology.
URI: https://opendata.uni-halle.de//handle/1981185920/115705
http://dx.doi.org/10.25673/113749
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:Fakultät für Verfahrens- und Systemtechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Espinel Rios_Sebastian_Dissertation_2023.pdfDissertation28.18 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen