Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/115696
Titel: Artificial Intelligence in Forecasting Demographic Processes
Autor(en): Mezhov, Stepan
Krayushkin, Maxim
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2024
Sprache: Englisch
Zusammenfassung: At the moment, there are no universal tools for forecasting indicators of socio-economic development in general and demographic in particular. However, the amount of budget allocations that are directed to solving personnel issues, creating social facilities and implementing other activities significant for economic, social and infrastructural development, development vectors depend on the forecast of demographic indicators by one-year-olds. In this article, a meaningful analysis is carried out an analysis of the researchers' work, based on the results of which it is determined that artificial intelligence models, in particular the most adaptive neural networks, are almost not used in predicting demographic indicators, forecasts based on models of artificial neural networks for all ages or by age groups, have almost no significance from the point of view of managing socio-economic development. The result of the research is a neural network methodological approach, methodology and tools for forecasting demographic processes for one-year-olds. The developed methodological approach to forecasting and tools are universal in the field of forecasting socio-economic indicators. In addition, the results described in the article can be used in other research in the field of forecasting, planning of any indicators.
URI: https://opendata.uni-halle.de//handle/1981185920/117651
http://dx.doi.org/10.25673/115696
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
3_3_ICAIIT_2024_Part_1_paper_11.pdf1.26 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen