Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/116815
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCianchia, Andrea-
dc.contributor.authorSchäffner, Mathias-
dc.date.accessioned2024-10-10T11:00:42Z-
dc.date.available2024-10-10T11:00:42Z-
dc.date.issued2024-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/118775-
dc.identifier.urihttp://dx.doi.org/10.25673/116815-
dc.description.abstractLocal minimizers of integral functionals of the calculus of variations are analyzed under growth conditions dictated by different lower and upper bounds for the integrand. Growths of non-necessarily power type are allowed. The local boundedness of the relevant minimizers is established under a suitable balance between the lower and the upper bounds. Classical minimizers, as well as quasi-minimizers are included in our discussion. Functionals subject to so-called -growth conditions are embraced as special cases and the corresponding sharp results available in the literature are recovered.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc510-
dc.titleLocal boundedness of minimizers under unbalanced Orlicz growth conditionseng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleJournal of differential equations-
local.bibliographicCitation.volume401-
local.bibliographicCitation.pagestart58-
local.bibliographicCitation.pageend92-
local.bibliographicCitation.publishernameElsevier-
local.bibliographicCitation.publisherplaceOrlando, Fla.-
local.bibliographicCitation.doi10.1016/j.jde.2024.04.016-
local.openaccesstrue-
dc.identifier.ppn1905350414-
cbs.publication.displayform2024-
local.bibliographicCitation.year2024-
cbs.sru.importDate2024-10-10T11:00:21Z-
local.bibliographicCitationEnthalten in Journal of differential equations - Orlando, Fla. : Elsevier, 1965-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
1-s2.0-S0022039624002298-main.pdf470.19 kBAdobe PDFThumbnail
View/Open