Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/117028
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMescher, Stephan-
dc.contributor.authorStegemeyer, Maximilian-
dc.date.accessioned2024-11-06T06:28:22Z-
dc.date.available2024-11-06T06:28:22Z-
dc.date.issued2023-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/118988-
dc.identifier.urihttp://dx.doi.org/10.25673/117028-
dc.description.abstractThe geodesic complexity of a Riemannian manifold is a numerical isometry invariant that is determined by the structure of its cut loci. In this article we study decompositions of cut loci over whose components the tangent cut loci fiber in a convenient way. We establish a new upper bound for geodesic complexity in terms of such decompositions. As an application, we obtain estimates for the geodesic complexity of certain classes of homogeneous manifolds. In particular, we compute the geodesic complexity of complex and quaternionic projective spaces with their standard symmetric metrics.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc510-
dc.titleGeodesic complexity via fibered decompositions of cut locieng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleJournal of applied and computational topology-
local.bibliographicCitation.volume7-
local.bibliographicCitation.pagestart397-
local.bibliographicCitation.pageend425-
local.bibliographicCitation.publishernameSpringer International Publishing-
local.bibliographicCitation.publisherplace[Cham]-
local.bibliographicCitation.doi10.1007/s41468-022-00107-4-
local.openaccesstrue-
dc.identifier.ppn1782622209-
cbs.publication.displayform2023-
local.bibliographicCitation.year2023-
cbs.sru.importDate2024-11-06T06:28:03Z-
local.bibliographicCitationEnthalten in Journal of applied and computational topology - [Cham] : Springer International Publishing, 2017-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
s41468-022-00107-4.pdf408.29 kBAdobe PDFThumbnail
View/Open