Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/117324
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHoffmann, Noah-
dc.contributor.authorCerqueira, Tiago F.T.-
dc.contributor.authorSchmidt, Jonathan-
dc.contributor.authorMarques, Miguel-
dc.date.accessioned2024-12-02T12:58:03Z-
dc.date.available2024-12-02T12:58:03Z-
dc.date.issued2022-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/119283-
dc.identifier.urihttp://dx.doi.org/10.25673/117324-
dc.description.abstractWe present a comprehensive theoretical study of conventional superconductivity in cubic antiperovskites materials with composition XYZ3 where X and Z are metals, and Y is H, B, C, N, O, and P. Our starting point are electron–phonon calculations for 397 materials performed with density-functional perturbation theory. While 43% of the materials are dynamically unstable, we discovered 16 compounds close to thermodynamic stability and with Tc higher than 5 K. Using these results to train interpretable machine-learning models, leads us to predict a further 57 (thermodynamically unstable) materials with superconducting transition temperatures above 5 K, reaching a maximum of 17.8 K for PtHBe3. Furthermore, the models give us an understanding of the mechanism of superconductivity in antiperovskites. The combination of traditional approaches with interpretable machine learning turns out to be a very efficient methodology to study and systematize whole classes of materials and is easily extendable to other families of compounds or physical properties.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc530-
dc.titleSuperconductivity in antiperovskiteseng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitlenpj computational materials-
local.bibliographicCitation.volume8-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend10-
local.bibliographicCitation.publishernameNature Publ. Group-
local.bibliographicCitation.publisherplaceLondon-
local.bibliographicCitation.doi10.1038/s41524-022-00817-4-
local.openaccesstrue-
dc.identifier.ppn191059248X-
cbs.publication.displayform2022-
local.bibliographicCitation.year2022-
cbs.sru.importDate2024-12-02T12:57:42Z-
local.bibliographicCitationEnthalten in npj computational materials - London : Nature Publ. Group, 2015-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
s41524-022-00817-4.pdf1.77 MBAdobe PDFThumbnail
View/Open