Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/117324
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hoffmann, Noah | - |
dc.contributor.author | Cerqueira, Tiago F.T. | - |
dc.contributor.author | Schmidt, Jonathan | - |
dc.contributor.author | Marques, Miguel | - |
dc.date.accessioned | 2024-12-02T12:58:03Z | - |
dc.date.available | 2024-12-02T12:58:03Z | - |
dc.date.issued | 2022 | - |
dc.identifier.uri | https://opendata.uni-halle.de//handle/1981185920/119283 | - |
dc.identifier.uri | http://dx.doi.org/10.25673/117324 | - |
dc.description.abstract | We present a comprehensive theoretical study of conventional superconductivity in cubic antiperovskites materials with composition XYZ3 where X and Z are metals, and Y is H, B, C, N, O, and P. Our starting point are electron–phonon calculations for 397 materials performed with density-functional perturbation theory. While 43% of the materials are dynamically unstable, we discovered 16 compounds close to thermodynamic stability and with Tc higher than 5 K. Using these results to train interpretable machine-learning models, leads us to predict a further 57 (thermodynamically unstable) materials with superconducting transition temperatures above 5 K, reaching a maximum of 17.8 K for PtHBe3. Furthermore, the models give us an understanding of the mechanism of superconductivity in antiperovskites. The combination of traditional approaches with interpretable machine learning turns out to be a very efficient methodology to study and systematize whole classes of materials and is easily extendable to other families of compounds or physical properties. | eng |
dc.language.iso | eng | - |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject.ddc | 530 | - |
dc.title | Superconductivity in antiperovskites | eng |
dc.type | Article | - |
local.versionType | publishedVersion | - |
local.bibliographicCitation.journaltitle | npj computational materials | - |
local.bibliographicCitation.volume | 8 | - |
local.bibliographicCitation.pagestart | 1 | - |
local.bibliographicCitation.pageend | 10 | - |
local.bibliographicCitation.publishername | Nature Publ. Group | - |
local.bibliographicCitation.publisherplace | London | - |
local.bibliographicCitation.doi | 10.1038/s41524-022-00817-4 | - |
local.openaccess | true | - |
dc.identifier.ppn | 191059248X | - |
cbs.publication.displayform | 2022 | - |
local.bibliographicCitation.year | 2022 | - |
cbs.sru.importDate | 2024-12-02T12:57:42Z | - |
local.bibliographicCitation | Enthalten in npj computational materials - London : Nature Publ. Group, 2015 | - |
local.accessrights.dnb | free | - |
Appears in Collections: | Open Access Publikationen der MLU |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
s41524-022-00817-4.pdf | 1.77 MB | Adobe PDF | ![]() View/Open |