Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/117356
Title: Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime
Author(s): Schlüter, SteffenLook up in the Integrated Authority File of the German National Library
Leuther, FredericLook up in the Integrated Authority File of the German National Library
Albrecht, Lukas
Hoeschen, Carmen
Kilian, Rüdiger
Surey, RonnyLook up in the Integrated Authority File of the German National Library
Mikutta, RobertLook up in the Integrated Authority File of the German National Library
Kaiser, Klaus
Mueller, Carsten W.
Vogel, Hans-JörgLook up in the Integrated Authority File of the German National Library
Issue Date: 2022
Type: Article
Language: English
Abstract: Soil carbon sequestration arises from the interplay of carbon input and stabilization, which vary in space and time. Assessing the resulting microscale carbon distribution in an intact pore space, however, has so far eluded methodological accessibility. Here, we explore the role of soil moisture regimes in shaping microscale carbon gradients by a novel mapping protocol for particulate organic matter and carbon in the soil matrix based on a combination of Osmium staining, X-ray computed tomography, and machine learning. With three different soil types we show that the moisture regime governs C losses from particulate organic matter and the microscale carbon redistribution and stabilization patterns in the soil matrix. Carbon depletion around pores (aperture > 10 µm) occurs in a much larger soil volume (19–74%) than carbon enrichment around particulate organic matter (1%). Thus, interacting microscale processes shaped by the moisture regime are a decisive factor for overall soil carbon persistence.
URI: https://opendata.uni-halle.de//handle/1981185920/119315
http://dx.doi.org/10.25673/117356
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Journal Title: Nature Communications
Publisher: Springer Nature
Publisher Place: [London]
Volume: 13
Original Publication: 10.1038/s41467-022-29605-w
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
s41467-022-29605-w.pdf7.68 MBAdobe PDFThumbnail
View/Open