Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/117787
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHayat Khan, Khizar-
dc.contributor.authorZafar, Aneesa-
dc.contributor.authorRashid, Haroon-
dc.contributor.authorAhmad, Iftikhar-
dc.contributor.authorShahzada Khand, Gul-
dc.contributor.authorHussain, Hazrat-
dc.date.accessioned2025-01-07T10:24:01Z-
dc.date.available2025-01-07T10:24:01Z-
dc.date.issued2024-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/119747-
dc.identifier.urihttp://dx.doi.org/10.25673/117787-
dc.description.abstractA new series of PVDF–HFP/PEG-based nanocomposite polymer electrolytes (NCPEs) have been fabricated using hausmannite (Mn3O4) nanoparticles as the nanofiller and LiClO4 as the lithium-ion source via the solvent casting method. A pristine PVDF–HFP NCPE sample with 2 wt% nanofiller was also prepared for comparison. The Mn3O4 nanoparticles were synthesized by the precipitation method using CTAB as a templating agent and MnCl2·4H2O as the precursor. FTIR spectroscopy showed that while pristine PVDF–HFP forms a nonpolar α-phase, the incorporation of salt and nanofiller induced a mixed β and γ crystal phase, indicating interaction between the matrix and additives. Surface morphology studies showed that the NCPEs had a denser surface than pristine PVDF–HFP, with no PEG spherulite formation detected in polarized optical micrographs. Electrochemical impedance spectroscopy revealed that the 2% blend NCPE exhibited the highest ion conductivity of 3.1 × 10−4 S cm−1 at 80 °C, an order of magnitude higher than the pristine NCPE (5.1 × 10−5 S cm−1). Temperature-dependent ion conductivity followed Arrhenius behavior, indicating a thermally activated ion hopping mechanism. The dielectric relaxation peak shifted to higher frequency with increasing temperature, suggesting faster ion dynamics and improved conductivity.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/-
dc.subject.ddc540-
dc.titleEnhancing lithium-ion conductivity : impact of hausmannite nanofiller on PVDF-HFP/PEG blend nanocomposite polymer electrolyteseng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleMaterials advances-
local.bibliographicCitation.volume5-
local.bibliographicCitation.issue24-
local.bibliographicCitation.pagestart9613-
local.bibliographicCitation.pageend9625-
local.bibliographicCitation.publishernameRoyal Society of Chemistry-
local.bibliographicCitation.publisherplaceCambridge-
local.bibliographicCitation.doi10.1039/d4ma00694a-
local.openaccesstrue-
dc.identifier.ppn1913638774-
cbs.publication.displayform2024-
local.bibliographicCitation.year2024-
cbs.sru.importDate2025-01-07T10:23:39Z-
local.bibliographicCitationEnthalten in Materials advances - Cambridge : Royal Society of Chemistry, 2020-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
d4ma00694a.pdf3.77 MBAdobe PDFThumbnail
View/Open