Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/118194
Titel: Built-in selection or confounder bias? : dynamic Landmarking in matched propensity score analyses
Autor(en): Strobel-Guht, AlexandraIn der Gemeinsamen Normdatei der DNB nachschlagen
Wienke, AndreasIn der Gemeinsamen Normdatei der DNB nachschlagen
Gummert, JanIn der Gemeinsamen Normdatei der DNB nachschlagen
Bleiziffer, SabineIn der Gemeinsamen Normdatei der DNB nachschlagen
Kuß, OliverIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2024
Art: Artikel
Sprache: Englisch
Zusammenfassung: Background: Propensity score matching has become a popular method for estimating causal treatment effects in non-randomized studies. However, for time-to-event outcomes, the estimation of hazard ratios based on propensity scores can be challenging if omitted or unobserved covariates are present. Not accounting for such covariates could lead to treatment estimates, differing from the estimate of interest. However, researchers often do not know whether (and, if so, which) covariates will cause this divergence. Methods: To address this issue, we extended a previously described method, Dynamic Landmarking, which was originally developed for randomized trials. The method is based on successively deletion of sorted observations and gradually fitting univariable Cox models. In addition, the balance of observed, but omitted covariates can be measured by the sum of squared z-differences. Results: By simulation we show, that Dynamic Landmarking provides a good visual tool for detecting and distinguishing treatment effect estimates underlying built-in selection or confounding bias. We illustrate the approach with a data set from cardiac surgery and provide some recommendations on how to use and interpret Dynamic Landmarking in propensity score matched studies. Conclusion: Dynamic Landmarking is a useful post-hoc diagnosis tool for visualizing whether an estimated hazard ratio could be distorted by confounding or built-in selection bias.
URI: https://opendata.uni-halle.de//handle/1981185920/120153
http://dx.doi.org/10.25673/118194
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: BMC medical research methodology
Verlag: BioMed Central
Verlagsort: London
Band: 24
Originalveröffentlichung: 10.1186/s12874-024-02444-7
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s12874-024-02444-7.pdf3.09 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen