Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/118274
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSchenzel, Peter-
dc.date.accessioned2025-02-24T07:07:03Z-
dc.date.available2025-02-24T07:07:03Z-
dc.date.issued2024-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/120233-
dc.identifier.urihttp://dx.doi.org/10.25673/118274-
dc.description.abstractLet R denote a Noetherian ring and an ideal J ⊂ R with U = Spec R \ V (J). For an R-module M there is an isomorphism Γ(U, ˜M ) ∼= lim−−→ HomR(Jn, M ) known as Deligne's formula (see [8, p. 217] and Deligne's Appendix in [7]). We extend the isomorphism for any R-module M in the non-Noetherian case of R and J = (x1, . . . , xk ) a certain finitely generated ideal. Moreover, we recall a corresponding sheaf construction.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc004-
dc.titleA note on Deligne's formulaeng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleJournal of pure and applied algebra-
local.bibliographicCitation.volume228-
local.bibliographicCitation.issue12-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend8-
local.bibliographicCitation.publishernameNorth-Holland, Elsevier Science-
local.bibliographicCitation.publisherplaceAmsterdam [u.a.]-
local.bibliographicCitation.doi10.1016/j.jpaa.2024.107754-
local.openaccesstrue-
dc.identifier.ppn1914576551-
cbs.publication.displayform2024-
local.bibliographicCitation.year2024-
cbs.sru.importDate2025-02-24T07:06:24Z-
local.bibliographicCitationEnthalten in Journal of pure and applied algebra - Amsterdam [u.a.] : North-Holland, Elsevier Science, 1971-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
1-s2.0-S0022404924001518-main.pdf306.25 kBAdobe PDFThumbnail
View/Open