Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/118629
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWacker, Benjamin-
dc.contributor.authorSchlüter, Christian Jan-
dc.date.accessioned2025-03-25T12:38:40Z-
dc.date.available2025-03-25T12:38:40Z-
dc.date.issued2023-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/120587-
dc.identifier.urihttp://dx.doi.org/10.25673/118629-
dc.description.abstractIn this work, we propose a new non-standard finite-difference-method for the numerical solution of the time-continuous non-autonomous susceptible-infected-recovered model. For our time-discrete numerical solution algorithm, we prove preservation of non-negativity and show that the unique time-discrete solution converges linearly towards the time-continuous unique solution. In addition to that, we introduce a parameter identification algorithm for the susceptible-infected-recovered model. Finally, we provide two numerical examples to stress our theoretical findings.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc610-
dc.titleA non-standard finite-difference-method for a non-autonomous epidemiological model: analysis, parameter identification and applicationseng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleMathematical biosciences and engineering-
local.bibliographicCitation.volume20-
local.bibliographicCitation.issue7-
local.bibliographicCitation.pagestart12923-
local.bibliographicCitation.pageend12954-
local.bibliographicCitation.publishernameInst.-
local.bibliographicCitation.publisherplaceSpringfield, Mo.-
local.bibliographicCitation.doi10.3934/mbe.2023577-
local.openaccesstrue-
dc.identifier.ppn1883983398-
cbs.publication.displayform2023-
local.bibliographicCitation.year2023-
cbs.sru.importDate2025-03-25T12:37:54Z-
local.bibliographicCitationEnthalten in Mathematical biosciences and engineering - Springfield, Mo. : Inst., 2004-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
10.3934_mbe.2023577.pdf717.23 kBAdobe PDFThumbnail
View/Open