Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/118873
Full metadata record
DC FieldValueLanguage
dc.contributor.refereeWienke, Andreas-
dc.contributor.refereeJahn, Antje-
dc.contributor.refereeHoyer, Annika-
dc.contributor.authorStrobel, Alexandra-
dc.date.accessioned2025-04-29T08:59:42Z-
dc.date.available2025-04-29T08:59:42Z-
dc.date.issued2025-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/120831-
dc.identifier.urihttp://dx.doi.org/10.25673/118873-
dc.description.abstractHazard ratios (HRs) are commonly used to describe treatment effects in trials focusing on time-to-event outcomes, but have faced growing criticism, particularly regarding non-collapsibility and causal interpretation. This work highlights another concern: unobserved or omitted covariates that induce bias in both randomized and propensity score matched trials. To address this, a new approach, “Dynamic Landmarking”, is introduced. It visually detects biased estimates by iteratively removing sorted observations and refitting Cox models. It also evaluates the balance of observed but omitted covariates using the sum of squared z-differences. Simulations confirm its effectiveness in identifying biased estimates and relevant omitted covariates that cause them. An application to 27 large RCTs found no empirical evidence of built-in selection bias, likely due to small treatment effects and strict inclusion criteria. Thus, HRs remain generally valid, at least regarding this type of bias.eng
dc.format.extent1 Online-Ressource (64 Seiten, verschiedene Seitenzählungen)-
dc.language.isoeng-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/-
dc.subject.ddc610-
dc.titleUncovering hidden influences : impact of omitted covariates on the estimation of treatment effects using Cox regression in randomized and propensity score matched trialseng
dcterms.dateAccepted2025-04-23-
dcterms.typeHochschulschrift-
dc.typePhDThesis-
dc.identifier.urnurn:nbn:de:gbv:3:4-1981185920-1208312-
local.versionTypepublishedVersion-
local.publisher.universityOrInstitutionMartin Luther University Halle-Wittenberg-
local.subject.keywordsCox model, Hazard Ratio, Bias, Dynamic Landmarking-
local.openaccesstrue-
dc.identifier.ppn1923872133-
cbs.publication.displayformHalle, 2025-
local.publication.countryXA-DE-
cbs.sru.importDate2025-04-29T08:58:42Z-
local.accessrights.dnbfree-
Appears in Collections:Interne-Einreichungen

Files in This Item:
File Description SizeFormat 
Dissertation_MLU_2025_StrobelAlexandra.pdf5.15 MBAdobe PDFThumbnail
View/Open