Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/119099
Titel: Improving text collations by local text resegmentation
Autor(en): Dähne, Janis
Ritter, JörgIn der Gemeinsamen Normdatei der DNB nachschlagen
Molitor, PaulIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2025
Art: Artikel
Sprache: Englisch
Zusammenfassung: In almost all current approaches, the collation of large texts is applied to a fixed given segmentation of the two texts witnesses to be compared and consists of two consecutive steps. First, the segments of the two texts are aligned, and then the aligned segments are compared in detail. For larger manuscripts or books consisting of many pages, the segments are usually the paragraphs of the texts. When comparing two texts, where the second text is a revised version of the first, poor local alignments can arise. This occurs in places where paragraphs have been split into two smaller paragraphs to insert a new paragraph in between, or where several consecutive sentences have been moved from one paragraph to the previous or next paragraph. Most paragraph collation tools cannot handle these scenarios properly because they align each paragraph with at most one paragraph of the other text. In this paper, we discuss this problem in detail and present a heuristic for resegmenting the two texts to be compared in order to achieve a better collation.
URI: https://opendata.uni-halle.de//handle/1981185920/121055
http://dx.doi.org/10.25673/119099
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Digital scholarship in the humanities
Verlag: Oxford University Press
Verlagsort: Oxford
Band: 40
Heft: 2
Originalveröffentlichung: 10.1093/llc/fqaf033
Seitenanfang: 477
Seitenende: 186
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
fqaf033.pdf1.32 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen