Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/119336
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.refereeWessjohann, Ludger-
dc.contributor.refereeRennert, Robert-
dc.contributor.refereeTissier, Alain-
dc.contributor.authorSaoud, Mohamad-
dc.date.accessioned2025-06-27T06:58:56Z-
dc.date.available2025-06-27T06:58:56Z-
dc.date.issued2025-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/121294-
dc.identifier.urihttp://dx.doi.org/10.25673/119336-
dc.description.abstractIn the development of new anticancer drugs, the identification of the mode of action (MoA) remains a significant challenge. This thesis demonstrates the integration of metabolomics into the drug discovery pipeline to predict the MoAs of novel anti-proliferative drug candidates, specifically for human prostate cancer cells (PC-3). By studying 38 drugs known to affect 16 key processes of cancer metabolism, we profiled low molecular weight intermediates of the central carbon and cellular energy metabolism (CCEM) using LC-MS/MS. These metabolic patterns revealed distinct MoAs, enabling the accurate prediction of MoAs for novel agents through machine learning algorithms. The methodology was further validated by transferring MoA predictions to two other cancer cell models, breast cancer and Ewing’s sarcoma, confirming that correct MoA predictions across different cancer types are feasible, albeit with some reduction in prediction quality.eng
dc.format.extent1 Online-Ressource (XIX, 135 Seiten)-
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc610-
dc.titleMetabolomics in drug discovery : cancer cells metabotyping to predict the mode of action of anticancer agentseng
dcterms.dateAccepted2025-06-02-
dcterms.typeHochschulschrift-
dc.typePhDThesis-
dc.identifier.urnurn:nbn:de:gbv:3:4-1981185920-1212946-
local.versionTypepublishedVersion-
local.publisher.universityOrInstitutionMartin-Luther-Universität Halle-Wittenberg-
local.subject.keywordsCancer, Drug discovery, Machine learning, Metabolomics, Mode of action-
local.openaccesstrue-
dc.identifier.ppn1929235488-
cbs.publication.displayformHalle, 2025-
local.publication.countryXA-DE-
cbs.sru.importDate2025-06-27T06:58:09Z-
local.accessrights.dnbfree-
Enthalten in den Sammlungen:Interne-Einreichungen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Dissertation_MLU_2025_SaoudMohamad.pdf6.39 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen