Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/119376
Title: Towards cytotoxic derivatives of cafestol
Author(s): Heise, Niels ValentinLook up in the Integrated Authority File of the German National Library
Kozubek, Marie Christine RenateLook up in the Integrated Authority File of the German National Library
Hoenke, SophieLook up in the Integrated Authority File of the German National Library
Ludwig, Senta
Deigner, Hans-PeterLook up in the Integrated Authority File of the German National Library
Al-Harrasi, AhmedLook up in the Integrated Authority File of the German National Library
Csuk, RenéLook up in the Integrated Authority File of the German National Library
Issue Date: 2025
Type: Article
Language: English
Abstract: This study focuses on the extraction, characterization, and biological evaluation of diterpenes from green coffee beans, specifically, cafestol and kahweol. These compounds, known for their potential health benefits, were isolated via optimized extraction and saponification processes. Separation was achieved using silver nitrate-impregnated silica gel, and structural elucidation was performed through advanced 1D and 2D NMR techniques, including HSQC, HMBC, and (IN)ADEQUATE. Due to kahweol’s instability, the research prioritized cafestol for the synthesis of rhodamine B conjugates. Initial ester-linked conjugates proved unstable, prompting the development of more robust derivatives through amide linkage strategies and further functionalization via acetylation and oxidation reactions. Some oxidation methods led to furan ring cleavage, impacting structural integrity. Selected compounds were tested for cytotoxicity using SRB assays on human tumor cell lines (MCF7, A2780) and non-malignant fibroblasts (NIH 3T3). While the parent diterpenes and many derivatives showed minimal activity, several cafestol–rhodamine B conjugates demonstrated notable cytotoxic effects. Compound 6, in particular, exhibited selective activity against cancer cells with reduced toxicity toward non-malignant cells.
URI: https://opendata.uni-halle.de//handle/1981185920/121334
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Journal Title: Molecules
Publisher: MDPI
Publisher Place: Basel
Volume: 30
Issue: 11
Original Publication: 10.3390/molecules30112291
Page Start: 1
Page End: 20
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File SizeFormat 
molecules-30-02291-v2.pdf923.51 kBAdobe PDFView/Open