Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/120719
Title: Structure-based virtual screening of tumor necrosis factor-α inhibitors by cheminformatics approaches and bio-molecular simulation
Author(s): Halim, Sobia Ahsan
Sikandari, Almas Gul
Khan, Ajmal
Wadood, Abdul
Fatmi, Muhammad Qaiser
Csuk, RenéLook up in the Integrated Authority File of the German National Library
Al-Harrasi, AhmedLook up in the Integrated Authority File of the German National Library
Issue Date: 2021
Type: Article
Language: English
Abstract: Tumor necrosis factor-α (TNF-α) is a drug target in rheumatoid arthritis and several other auto-immune disorders. TNF-α binds with TNF receptors (TNFR), located on the surface of several immunological cells to exert its effect. Hence, the use of inhibitors that can hinder the complex formation of TNF-α/TNFR can be of medicinal significance. In this study, multiple chem-informatics approaches, including descriptor-based screening, 2D-similarity searching, and pharmacophore modelling were applied to screen new TNF-α inhibitors. Subsequently, multiple-docking protocols were used, and four-fold post-docking results were analyzed by consensus approach. After structure-based virtual screening, seventeen compounds were mutually ranked in top-ranked position by all the docking programs. Those identified hits target TNF-α dimer and effectively block TNF-α/TNFR interface. The predicted pharmacokinetics and physiological properties of the selected hits revealed that, out of seventeen, seven compounds (4, 5, 10, 11, 13–15) possessed excellent ADMET profile. These seven compounds plus three more molecules (7, 8 and 9) were chosen for molecular dynamics simulation studies to probe into ligand-induced structural and dynamic behavior of TNF-α, followed by ligand-TNF-α binding free energy calculation using MM-PBSA. The MM-PBSA calculations revealed that compounds 4, 5, 7 and 9 possess highest affinity for TNF-α; 8, 11, 13–15 exhibited moderate affinities, while compound 10 showed weaker binding affinity with TNF-α. This study provides valuable insights to design more potent and selective inhibitors of TNF-α, that will help to treat inflammatory disorders.
URI: https://opendata.uni-halle.de//handle/1981185920/122674
http://dx.doi.org/10.25673/120719
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Journal Title: Biomolecules
Publisher: MDPI
Publisher Place: Basel
Volume: 11
Issue: 2
Original Publication: 10.3390/biom11020329
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File SizeFormat 
biomolecules-11-00329-v2.pdf8.39 MBAdobe PDFView/Open