Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/121012
Titel: A Graph Neural Network Approach for Identifying Decentralized Applications in Encrypted Traffic
Autor(en): Sufrianto, Sufrianto
Harudin, La
Alomairi, Abbas Oudah Waheed
Maktoof, Abdul Jaleel
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2025-07-26
Sprache: Englisch
Zusammenfassung: Cryptographic network traffic classification has been challenged by the advent of decentralized applications (DApps), especially those based on blockchain platforms like Ethereum. It is difficult to identify DApps using traditional methods, such as port-based identification or deep packet inspection, due to their encryption and protocol similarities. The paper proposes GraphDApp, a novel method for identifying DApps from encrypted traffic that does not rely on payload content but instead relies on Graph Neural Networks (GNNs) and Traffic Interaction Graphs (TIGs). Conventional techniques miss structural patterns and interactions in communication flows due to their representation as graphs. A real-world dataset demonstrates that GraphDApp is significantly more accurate, more efficient in training, and more resilient to unmonitored DApps than existing methods, with near-perfect accuracy and stable performance under diverse conditions. We present a GNN-based framework for detecting decentralized applications (DApps) in encrypted traffic, achieving 92.1% F1-score by analyzing transaction patterns. Our method outperforms traditional classifiers by 18.3% while preserving full traffic encryption.
URI: https://opendata.uni-halle.de//handle/1981185920/122967
http://dx.doi.org/10.25673/121012
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
4-4-ICAIIT_2025_13(3).pdf966.06 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen