Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/121014
Titel: Revolutionizing Surveillance with Deep Learning-Powered Anomaly Detection and Real-Time Behavior Analysis
Autor(en): Shanmuga Shyam, B.
Murugan, Selva Jothi
Parisu, Chairan Zibar L.
Sasmin, Sasmin
Vignesh, Janani
Abdukarem, Ahmed Mohammed
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2025-07-26
Umfang: 1 Online-Ressource (8 Seiten)
Sprache: Englisch
Zusammenfassung: A novel approach for real-time anomaly detection within CCTV surveillance systems, taking the full power of advanced deep learning models to overcome the shortcomings of human-monitored surveillance. Traditional systems are largely dependent on human operators monitoring video feeds, often resulting in fatigue, distraction, and delayed responses. The use of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) in enhancing the automation of anomaly detection. CNNs have been specialized in extracting spatial features from video frames, identifying objects, scenes, and contextual patterns. RNNs, analyzing temporal dynamics, capture behaviors over time, hence detecting patterns that are indicative of abnormal activities. The fusion of these models allows the system to detect fights, accidents, or falls in real time. Moreover, the system provides a much lower rate of false positives, allowing the system to be much more accurate than traditional systems regarding anomaly detection. Real-time anomaly detection is crucial for applications in public safety, health care, traffic management, and retail, all allowing for faster response times and improving operational efficiency with a reduced reliance on human intervention. The discussion is about development, methodology, and potential applications and demonstrates the dramatic impact it had on public safety and operational efficiency.
URI: https://opendata.uni-halle.de//handle/1981185920/122969
http://dx.doi.org/10.25673/121014
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
4-6-ICAIIT_2025_13(3).pdf914.59 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen