Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/121023
Titel: Data-Driven Crop, Fertilizer and Analytics Guidance through Machine Learning
Autor(en): Dhatchinamoorthy, Nandhakumar
Ilham, Vickky Anggara
Sasmita, Farra
Khaleel, Reem Abduljaleel
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2025-07-26
Umfang: 1 Online-Ressource (9 Seiten)
Sprache: Englisch
Zusammenfassung: Farmers still face many difficulties in today's technological world. NLP-powered conversational AI (CAI) chatbots can consistently help farmers across diverse areas of farming, delivering positive economic impacts. Modern technological innovations are being adopted by agricultural firms to significantly reduce operational costs, increase revenues, automate labor-intensive processes, and drive sustainable growth. This study follows a similar approach for agriculture – a sector critically employing approximately 71% of rural Indians. Natural Language Processing (NLP), a core subfield of AI, enables computers to recognize, understand, and analyze human languages effectively and is integral to Conversational AI systems. Economic challenges, climate change, and environmental factors – including poor soil quality, adverse weather patterns, water contamination, and difficult terrain – profoundly affect farming productivity. Despite these persistent hardships, farmers work tirelessly to feed the world's rapidly expanding population. A specialized CAI bot for agriculture was developed to provide timely, on-demand assistance to farmers on critical farming and market-related issues year-round.
URI: https://opendata.uni-halle.de//handle/1981185920/122978
http://dx.doi.org/10.25673/121023
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
5-5-ICAIIT_2025_13(3).pdf966.21 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen