Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/121072| Title: | Photocontrol and structural analysis of amyloid fibril formation using azobenzene and novel spiropyran photoswitches |
| Author(s): | Paschold, André |
| Referee(s): | Binder, Wolfgang H. Blank, Kerstin |
| Granting Institution: | Martin-Luther-Universität Halle-Wittenberg |
| Issue Date: | 2025 |
| Extent: | 1 Online-Ressource (248 Seiten in verschiedenen Seitenzählungen) |
| Type: | Hochschulschrift |
| Type: | PhDThesis |
| Exam Date: | 2025-10-16 |
| Language: | English |
| URN: | urn:nbn:de:gbv:3:4-1981185920-1230274 |
| Abstract: | The self-organization of amyloidogenic peptides plays a crucial role in diseases and in physiological functions. Thus, the control of this process is a powerful tool to gain insights into its kinetics and the structural nature of the peptide assemblies. In this work different photoswitches were incorporated into PTH-derived peptides to establish a model system able to switch between a fibrillary and nonfibrillar state. As switches the azobenzene photoswitch 3-((4-(aminomethyl)phenyl)diazenyl)benzoic acid was chosen and the novel spiropyran building blocks were 5’-amino-1’,3’,3’-trimethylspiro[chromene-2,2’-indoline]-6-carboxylic acid and 6-amino-1’,3’,3’-trimethylspiro[chromene-2,2’-indoline]-5’-carboxylic acid were designed, which can be incorporated into the peptide backbone. The spiropyran building are the first report of spiropyrans introduced into the backbone of peptides. The azobenzene modified peptide were used to establish a switchable amyloid forming model system. |
| URI: | https://opendata.uni-halle.de//handle/1981185920/123027 http://dx.doi.org/10.25673/121072 |
| Open Access: | Open access publication |
| License: | (CC BY 4.0) Creative Commons Attribution 4.0 |
| Appears in Collections: | Interne-Einreichungen |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Dissertation_MLU_2025_PascholdAndre.pdf | 15.76 MB | Adobe PDF | ![]() View/Open |
Open access publication
