Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/121568Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Barry, Kathryn E. | - |
| dc.contributor.author | Hennecke, Justus | - |
| dc.contributor.author | Weigelt, Alexandra | - |
| dc.contributor.author | Bergmann, Joana | - |
| dc.contributor.author | Bruelheide, Helge | - |
| dc.date.accessioned | 2025-12-05T08:19:00Z | - |
| dc.date.available | 2025-12-05T08:19:00Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | https://opendata.uni-halle.de//handle/1981185920/123520 | - |
| dc.identifier.uri | http://dx.doi.org/10.25673/121568 | - |
| dc.description.abstract | Humans are driving biodiversity change, which also alters community functional traits. However, how changes in the functional traits of the community alter ecosystem functions—especially belowground—remains an important gap in our understanding of the consequences of biodiversity change. We test hypotheses for how the root traits of the root economics space (composed of the collaboration and conservation gradients) are associated with proxies for ecosystem functioning across grassland and forest ecosystems in both observational and experimental datasets from 810 plant communities. First, we assessed whether community-weighted means of the root economics space traits adhered to the same trade-offs as species-level root traits. Then, we examined the relationships between community-weighted mean root traits and aboveground biomass production, root standing biomass, soil fauna biomass, soil microbial biomass, decomposition of standard and plot-specific material, ammonification, nitrification, phosphatase activity, and drought resistance. We found evidence for a community collaboration gradient but not for a community conservation gradient. Yet, links between community root traits and ecosystem functions were more common than we expected, especially for aboveground biomass, microbial biomass, and decomposition. These findings suggest that changes in species composition, which alter root trait means, will in turn affect critical ecosystem functions. | eng |
| dc.language.iso | eng | - |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
| dc.subject.ddc | 570 | - |
| dc.title | Rooting for function : community-level fine-root traits relate to many ecosystem functions | eng |
| dc.type | Article | - |
| local.versionType | publishedVersion | - |
| local.bibliographicCitation.journaltitle | The new phytologist | - |
| local.bibliographicCitation.volume | 248 | - |
| local.bibliographicCitation.issue | 6 | - |
| local.bibliographicCitation.pagestart | 3221 | - |
| local.bibliographicCitation.pageend | 3239 | - |
| local.bibliographicCitation.publishername | Wiley-Blackwell | - |
| local.bibliographicCitation.publisherplace | Oxford [u.a.] | - |
| local.bibliographicCitation.doi | 10.1111/nph.70606 | - |
| local.openaccess | true | - |
| dc.identifier.ppn | 1942593910 | - |
| cbs.publication.displayform | 2025 | - |
| local.bibliographicCitation.year | 2025 | - |
| cbs.sru.importDate | 2025-12-05T08:18:35Z | - |
| local.bibliographicCitation | Enthalten in The new phytologist - Oxford [u.a.] : Wiley-Blackwell, 1902 | - |
| local.accessrights.dnb | free | - |
| Appears in Collections: | Open Access Publikationen der MLU | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| New Phytologist - 2025 - Barry - Rooting for function community‐level fine‐root traits relate to many ecosystem functions.pdf | 1.76 MB | Adobe PDF | ![]() View/Open |
