Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/121604
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorLeblanc, César-
dc.contributor.authorBonnet, Pierre-
dc.contributor.authorServajean, Maximilien-
dc.contributor.authorThuiller, Wilfried-
dc.contributor.authorChytrý, Milan-
dc.contributor.authorAćić, Svetlana-
dc.contributor.authorArgagnon, Olivier-
dc.contributor.authorBiurrun, Idoia-
dc.contributor.authorBonari, Gianmaria-
dc.contributor.authorBruelheide, Helge-
dc.contributor.authorJandt, Ute-
dc.date.accessioned2025-12-08T09:41:13Z-
dc.date.available2025-12-08T09:41:13Z-
dc.date.issued2025-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/123556-
dc.identifier.urihttp://dx.doi.org/10.25673/121604-
dc.description.abstractTo address the urgent biodiversity crisis, it is crucial to understand the nature of plant assemblages. The distribution of plant species is shaped not only by their broad environmental requirements but also by micro-environmental conditions, dispersal limitations, and direct and indirect species interactions. While predicting species composition and habitat type is essential for conservation and restoration purposes, it remains challenging. In this study, we propose an approach inspired by advances in large language models to learn the ‘syntax’ of abundance-ordered plant species sequences in communities. Our method, which captures latent associations between species across diverse ecosystems, can be fine-tuned for diverse tasks. In particular, we show that our methodology is able to outperform other approaches to (1) predict species that might occur in an assemblage given the other listed species, despite being originally missing in the species list (16.53% higher accuracy in retrieving a plant species removed from an assemblage than co-occurrence matrices and 6.56% higher than neural networks), and (2) classify habitat types from species assemblages (5.54% higher accuracy in assigning a habitat type to an assemblage than expert system classifiers and 1.14% higher than tabular deep learning). The proposed application has a vocabulary that covers over 10,000 plant species from Europe and adjacent countries and provides a powerful methodology for improving biodiversity mapping, restoration and conservation biology. As ecologists begin to explore the use of artificial intelligence, such approaches open opportunities for rethinking how we model, monitor and understand nature.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc580-
dc.titleLearning the syntax of plant assemblageseng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleNature plants-
local.bibliographicCitation.volume11-
local.bibliographicCitation.issue10-
local.bibliographicCitation.pagestart2026-
local.bibliographicCitation.pageend2040-
local.bibliographicCitation.publishernameNature Publ. Group-
local.bibliographicCitation.publisherplaceLondon-
local.bibliographicCitation.doi10.1038/s41477-025-02105-7-
local.openaccesstrue-
dc.identifier.ppn1942704615-
cbs.publication.displayform2025-
local.bibliographicCitation.year2025-
cbs.sru.importDate2025-12-08T09:40:52Z-
local.bibliographicCitationEnthalten in Nature plants - London : Nature Publ. Group, 2015-
local.accessrights.dnbfree-
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s41477-025-02105-7.pdf3.6 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen