Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/121716
Titel: AI-Based Power Control for Solar-Powered OFDM Systems
Autor(en): Abdulkafi, Ayad A.
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2025
Umfang: 1 Online-Ressource (6 Seiten)
Sprache: Englisch
Zusammenfassung: This paper explores the integration of renewable energy and artificial intelligence (AI) into next-generation wireless communication networks. Using orthogonal frequency-division multiplexing (OFDM) over Rayleigh fading channels, we simulate and evaluate four scenarios: traditional wireless systems, renewable-powered systems, AI-assisted systems, and intelligent renewable-powered systems. Key performance metrics such as Bit Error Rate (BER), Spectral Efficiency (SE), and Energy Efficiency (EE) are analyzed under varying signal-to-noise ratio (SNR) conditions. A Q-learning-based AI algorithm is employed for dynamic power allocation, aiming to maximize energy efficiency while preserving communication reliability. Simulation results show that AI-assisted renewable-powered systems - especially those powered by solar energy - offer significant improvements in energy efficiency without degrading signal performance. The findings underscore the potential of combining AI and renewable energy to build sustainable, efficient, and reliable wireless networks. This study supports the vision of intelligent, green 6G and beyond communication systems, where environmental sustainability and high performance are jointly achieved through advanced optimization and clean energy integration.
URI: https://opendata.uni-halle.de//handle/1981185920/123668
http://dx.doi.org/10.25673/121716
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
1-4-ICAIIT_2025_13(4).pdf912.27 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen