Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/121790
Title: Unlocking hidden potential in electron holography of non-collinear spin textures
Author(s): Winterott, Moritz
Lounis, SamirLook up in the Integrated Authority File of the German National Library
Issue Date: 2025
Type: Article
Language: English
Abstract: Due to their particle-like properties, three-dimensional (3D) spin textures have garnered significant interest, particularly for their potential applications in next-generation information storage devices. However, efficiently identifying these textures remains a major challenge, especially if they are of antiferromagnetic nature. Here, we demonstrate that instead of relying solely on the magnetic stray field, which vanishes in antiferromagnets, one can harvest the usually disregarded electronic signal. This gives rise to a electron holographic contribution probed by transmission electron microscopy (TEM). We reveal the underlying physics, systematically quantify, and offer disentangling strategies for both conventional and previously neglected identified TEM images, extracted from various magnetic structures, including ferromagnetic and antiferromagnetic skyrmion tubes, as well as hopfions. Our findings mark a milestone in advancing the exploration and possible application of 3D spin textures in next-generation spintronic devices.
URI: https://opendata.uni-halle.de//handle/1981185920/123741
http://dx.doi.org/10.25673/121790
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Journal Title: Communications Physics
Publisher: Springer Nature
Publisher Place: London
Volume: 8
Original Publication: 10.1038/s42005-025-02422-5
Page Start: 1
Page End: 8
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
s42005-025-02422-5.pdf1.53 MBAdobe PDFThumbnail
View/Open