Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/122080
Titel: Eggs Detection and Classification Using YOLOV5
Autor(en): Abdulhameed, Wesam Basil
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2025-08
Umfang: 1 Online-Ressource (6 Seiten)
Sprache: Englisch
Zusammenfassung: As poultry product quality increases, so does the need for effective poultry egg sorting due to the limitations of manual processes. Modern farms now utilize automated systems to enhance productivity and accuracy, as well as improve animal welfare. An intelligent egg detection and classification system based on deep learning is proposed in this study. A dataset consisting of white and brown chicken eggs was collected and annotated alongside multiple variants of YOLOv5 to train and evaluate them. Various metrics including precision, recall, F1 score, mAP, and computational time were measured to determine how effective each model was. Results showed that the YOLOv5n model outperformed the rest with an F1 score of 0.98, along with achieving excellent detection accuracy and low computational requirements, thus showing suitability for real time applications. The work done in this paper demonstrated the possibilities given by computer vision in automating egg sorting and laid the groundwork for applying such systems into fully autonomous poultry farms.
URI: https://opendata.uni-halle.de//handle/1981185920/124028
http://dx.doi.org/10.25673/122080
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei GrößeFormat 
2-10-ICAIIT_2025_13(4).pdf1.52 MBAdobe PDFÖffnen/Anzeigen