Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/122223
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZubair, Muhammad-
dc.contributor.authorLiu, Xiaochen-
dc.contributor.authorTouidjine, Kaouther-
dc.contributor.authorVeerapanaicker Soundaraj, Pradhyun-
dc.contributor.authorFinsterbusch, Martin-
dc.contributor.authorTietz, Frank-
dc.contributor.authorFattakhova‐Rohlfing, Dina-
dc.contributor.authorGuillon, Olivier-
dc.date.accessioned2026-02-17T09:30:24Z-
dc.date.available2026-02-17T09:30:24Z-
dc.date.issued2026-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/124169-
dc.identifier.urihttp://dx.doi.org/10.25673/122223-
dc.description.abstractCeramic-based lithium metal batteries widespread application is limited by the persistent difficulty in achieving stable performance under high c-rate conditions. Herein, we designed flat, thin (~200 μm) Li6.45Al0.05La3Zr1.6Ta0.4O12 single-layer 3D porous scaffolds by the tape-casting technique. Leveraging a meticulously engineered single-layer scaffold, lithium metal is uniformly infiltrated to an average thickness of 35 μm, ensuring seamless interfacial contact. Concurrently, a solid polymer electrolyte is integrated, facilitating the formation of a robust composite solid polymer-garnet separator with a precise thickness of 165 μm, all within a unified structural framework. The integrated single-framework not only reinforces structural and interfacial stability of the metallic anode but also facilitates rapid Li+transport, markedly enhancing ionic conductivity. This synergistic effect enables exceptionally high-rate performance, paving the way for more efficient and reliable electro chemical applications. Full cells with lithium iron phosphate cathode and the Li-infiltrated single-layer ceramic/ polymer electrolyte cycled at record current rates of 2C and 5C at room temperature and achieved 100 % pacity retention for 30 cycles at 0.1C. The discharge specific capacities at 2C and 5C are 106.4 and 76.7 mAh g􀀀1, respectively. This innovative single-layer framework is designed to enable high-current-density, room- ature solid-state lithium-metal batteries while eliminating the need for stacking pressure.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc530-
dc.titleHigh-rate performance solid-state lithium batteries achieved by infiltrating a single-layer LLZO scaffoldeng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleJournal of power sources-
local.bibliographicCitation.volume666-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend8-
local.bibliographicCitation.publishernameElsevier-
local.bibliographicCitation.publisherplaceNew York, NY [u.a.]-
local.bibliographicCitation.doi10.1016/j.jpowsour.2025.239065-
local.openaccesstrue-
dc.identifier.ppn1961226642-
cbs.publication.displayform2026-
local.bibliographicCitation.year2026-
cbs.sru.importDate2026-02-17T09:29:42Z-
local.bibliographicCitationEnthalten in Journal of power sources - New York, NY [u.a.] : Elsevier, 1976-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File SizeFormat 
1-s2.0-S0378775325029027-main.pdf6.85 MBAdobe PDFView/Open