Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/36584
Titel: Influence of synthetic image datasets on the result of neural networks for object detection
Autor(en): Kniazev, Aleksandr
Slivnitsin, Pavel
Mylnikov, Leonid
Schlechtweg, Stefan
Kokoulin, Andrey
Erscheinungsdatum: 2021
Sprache: Englisch
Zusammenfassung: The goal of the article is research of ways to improve the quality of neural networks object detection. To achieve this goal we suggest to use synthetic image datasets. The algorithm of generating synthetic images, which uses the environment of the detected object, is described in the article. That algorithm could be applied in the control algorithm of the robotic system for luminaire replacement that is based on target object detection. 3D models and 3D camera images of detected objects, backgrounds, noise objects and different effects are used to create realistic images that will increase the quality of predictions. Quality tests were made with synthetic and real datasets. Results show that quality could be increased up to 16%. Ratio of real and synthetic data is 1:4.
URI: https://opendata.uni-halle.de//handle/1981185920/36817
http://dx.doi.org/10.25673/36584
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2_2_Kniazev.pdf551.76 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen