Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/37300
Titel: Identifying similarities of big data projects : a use case driven approach
Autor(en): Volk, Matthias
Staegemann, Daniel
Trifonova, Ivayla
Bosse, Sascha
Turowski, KlausIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2020
Art: Artikel
Sprache: Englisch
URN: urn:nbn:de:gbv:ma9:1-1981185920-375376
Schlagwörter: Big data
Use case analysis
Clustering
Categorization
Literature review
Zusammenfassung: Big data is considered as one of the most promising technological advancements in the last decades. Today it is used for a multitude of data intensive projects in various domains and also serves as the technical foundation for other recent trends in the computer science domain. However, the complexity of its implementation and utilization renders its adoption a sophisticated endeavor. For this reason, it is not surprising that potential users are often overwhelmed and tend to rely on existing guidelines and best practices to successfully realize and monitor their projects. A valuable source of knowledge are use case descriptions, of which a multitude exists, each of them with a varying information density. In this design science research endeavor, 43 use cases are identified by conducting a thorough literature review in combination with the application and adaption of a corresponding template for big data projects. By a subsequent categorization, which is performed by identifying and employing a hierarchical clustering algorithm, nine different standard use cases emerge, as the contribution's artifact. This provides decision-makers with an initial entry point, which can be utilized to shape their project ideas, not only by identifying the general meaningfulness of their potential big data project but also in terms of concrete implementation details.
URI: https://opendata.uni-halle.de//handle/1981185920/37537
http://dx.doi.org/10.25673/37300
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Sponsor/Geldgeber: OVGU-Publikationsfonds 2021
Journal Titel: IEEE access
Verlag: IEEE
Verlagsort: New York, NY
Band: 8
Originalveröffentlichung: 10.1109/ACCESS.2020.3028127
Seitenanfang: 186599
Seitenende: 186619
Enthalten in den Sammlungen:Fakultät für Informatik (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Volk et al._identifying_2021.pdfZweitveröffentlichung3.57 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen