Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/37925
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHeidfeld, Hannes-
dc.contributor.authorSchünemann, Martin-
dc.date.accessioned2021-08-18T12:50:05Z-
dc.date.available2021-08-18T12:50:05Z-
dc.date.issued2021-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/38168-
dc.identifier.urihttp://dx.doi.org/10.25673/37925-
dc.description.abstractNovel drivetrain concepts such as electric direct drives can improve vehicle dynamic control due to faster, more accurate, and more flexible generation of wheel individual propulsion and braking torques. Exact and robust estimation of vehicle state of motion in the presence of unknown disturbances, such as changes in road conditions, is crucial for realization of such control systems. This article shows the design, tuning, implementation, and test of a state estimator with individual tire model adaption for direct drive electric vehicles. The vehicle dynamics are modeled using a double-track model with an adaptive tire model. State-of-the-art sensors, an inertial measurement unit, steering angle, wheel speed, and motor current sensors are used as measurements. Due to the nonlinearity of the vehicle model, an Unscented KALMAN Filter (UKF) is used for simultaneous state and parameter estimation. To simplify the difficult task of UKF tuning, an optimization-based method using real-vehicle data is utilized. The UKF is implemented on an electronic control unit and tested with real-vehicle data in a hardware-in-the-loop simulation. High precision even in severe driving maneuvers under various road conditions is achieved. Nonlinear state and parameter estimation for all wheel drive electric vehicles using UKF and optimization-based tuning is shown to provide high precision with minimal manual tuning effort.eng
dc.description.sponsorshipOVGU-Publikationsfonds 2021-
dc.language.isoeng-
dc.relation.ispartofhttp://www.mdpi.com/journal/energies-
dc.relation.ispartofhttp://www.mdpi.com/journal/energies-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectNonlinear state and parameter estimationeng
dc.subjectElectric vehicleeng
dc.subjectVehicle dynamicseng
dc.subject.ddc621.8-
dc.titleOptimization-based tuning of a hybrid UKF state estimator with tire model adaption for an all wheel drive electric vehicleeng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-381688-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleEnergies-
local.bibliographicCitation.volume14-
local.bibliographicCitation.issue5-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend23-
local.bibliographicCitation.publishernameMDPI-
local.bibliographicCitation.publisherplaceBasel-
local.bibliographicCitation.doi10.3390/en14051396-
local.openaccesstrue-
dc.identifier.ppn1762956276-
local.bibliographicCitation.year2021-
cbs.sru.importDate2021-08-18T12:44:26Z-
local.bibliographicCitationEnthalten in Energies - Basel : MDPI, 2008-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Maschinenbau (OA)

Files in This Item:
File Description SizeFormat 
Heidfeld et al._Optimization-based_2021.pdfZweitveröffentlichung4.2 MBAdobe PDFThumbnail
View/Open