Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/42980
Title: On the difference between the tensile stiffness of bulk and slice samples of microstructured materials
Author(s): Glüge, RainerLook up in the Integrated Authority File of the German National Library
Altenbach, HolmLook up in the Integrated Authority File of the German National Library
Mahmood, Nasir
Beiner, Mario
Issue Date: 2020
Type: Article
Language: English
URN: urn:nbn:de:gbv:ma9:1-1981185920-449345
Subjects: Microstructure
Polycrystals
Tensile testing
Bulk properties
Abstract: Many materials with a microstructure are statistically inhomogeneous, like casting skins in polymers or grain size gradients in polycrystals. It is desirable be able to account for the structural gradient. The first step is to measure the location dependent properties, for example by tensile testing of thin slices. Unfortunately, the slices properties can differ significantly from the bulk properties, since the slices lack a scale separation in one direction. For Polypropylen, we measured that Young’s modulus of the slices is approximately 70% of the respective bulk value. We have identified three significant effects, all making the slices appear softer than the bulk material: Load path confinement: The approximate plane stress forces the load path through a softer phase where in 3D-of-plane load distribution is possible. Free lateral straining: In thin slices, small regions can contract freely, while phases have to contract concurrently in the bulk. Therefore, when two phases have very different Poisson ratios, the bulk appears stiffer than a slice. Topological changes upon slicing: Interpenetrating phases in the bulk can show features of a matrix-inclusion-structure in the slices. We examine and quantify these effects in the linear elastic range for matrix-inclusion-structures and an interpenetrating-phase-structure. Some approaches on how the slice- vs bulk difference can be estimated are given.
URI: https://opendata.uni-halle.de//handle/1981185920/44934
http://dx.doi.org/10.25673/42980
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Sponsor/Funder: Projekt DEAL 2020
Journal Title: Applied composite materials
Publisher: Springer Science + Business Media B.V
Publisher Place: Dordrecht [u.a.]
Volume: 27
Original Publication: 10.1007/s10443-020-09833-3
Page Start: 969
Page End: 988
Appears in Collections:Fakultät für Maschinenbau (OA)

Files in This Item:
File Description SizeFormat 
Gluege et al._On the difference_2020.pdfZweitveröffentlichung2.7 MBAdobe PDFThumbnail
View/Open