Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/60687Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Averkov, Gennadiy | - |
| dc.contributor.author | Borger, Christopher | - |
| dc.contributor.author | Soprunov, Ivan | - |
| dc.date.accessioned | 2022-01-27T13:19:42Z | - |
| dc.date.available | 2022-01-27T13:19:42Z | - |
| dc.date.issued | 2021 | - |
| dc.date.submitted | 2021 | - |
| dc.identifier.uri | https://opendata.uni-halle.de//handle/1981185920/62638 | - |
| dc.identifier.uri | http://dx.doi.org/10.25673/60687 | - |
| dc.description.abstract | We present an algorithm for the classification of triples of lattice polytopes with a given mixed volume m in dimension 3. It is known that the classification can be reduced to the enumeration of so-called irreducible triples, the number of which is finite for fixed m. Following this algorithm, we enumerate all irreducible triples of normalized mixed volume up to 4 that are inclusion-maximal. This produces a classification of generic trivariate sparse polynomial systems with up to 4 solutions in the complex torus, up to monomial changes of variables. By a recent result of Esterov, this leads to a description of all generic trivariate sparse polynomial systems that are solvable by radicals. | eng |
| dc.description.sponsorship | Projekt DEAL 2020 | - |
| dc.language.iso | eng | - |
| dc.relation.ispartof | http://link.springer.com/journal/454 | - |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
| dc.subject | Bernstein–Khovanskii–Kouchnirenko theorem | eng |
| dc.subject | Classification | eng |
| dc.subject | Lattice polytope | eng |
| dc.subject | Mixed volume | eng |
| dc.subject | Newton polytope | eng |
| dc.subject | Sparse polynomial systems | eng |
| dc.subject.ddc | 510.72 | - |
| dc.title | Classification of triples of lattice polytopes with a given mixed volume | eng |
| dc.type | Article | - |
| dc.identifier.urn | urn:nbn:de:gbv:ma9:1-1981185920-626381 | - |
| local.versionType | publishedVersion | - |
| local.bibliographicCitation.journaltitle | Discrete & computational geometry | - |
| local.bibliographicCitation.volume | 66 | - |
| local.bibliographicCitation.pagestart | 165 | - |
| local.bibliographicCitation.pageend | 202 | - |
| local.bibliographicCitation.publishername | Springer | - |
| local.bibliographicCitation.publisherplace | New York, NY | - |
| local.bibliographicCitation.doi | 10.1007/s00454-020-00246-4 | - |
| local.openaccess | true | - |
| dc.identifier.ppn | 1787331377 | - |
| local.bibliographicCitation.year | 2021 | - |
| cbs.sru.importDate | 2022-01-27T13:13:59Z | - |
| local.bibliographicCitation | Enthalten in Discrete & computational geometry - New York, NY : Springer, 1986 | - |
| local.accessrights.dnb | free | - |
| Appears in Collections: | Fakultät für Mathematik (OA) | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Averkov et al._Classification_2021.pdf | Zweitveröffentlichung | 692.16 kB | Adobe PDF | ![]() View/Open |
