Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/63935
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPetö, Márton-
dc.contributor.authorDuvigneau, Fabian-
dc.contributor.authorJuhre, Daniel-
dc.contributor.authorEisenträger, Sascha-
dc.date.accessioned2022-02-10T09:30:07Z-
dc.date.available2022-02-10T09:30:07Z-
dc.date.issued2021-
dc.date.submitted2021-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/65886-
dc.identifier.urihttp://dx.doi.org/10.25673/63935-
dc.description.abstractPolygonal finite elements offer an increased freedom in terms of mesh generation at the price of more complex, often rational, shape functions. Thus, the numerical integration of rational interpolants over polygonal domains is one of the challenges that needs to be solved. If, additionally, strong discontinuities are present in the integrand, e.g., when employing fictitious domain methods, special integration procedures must be developed. Therefore, we propose to extend the conventional quadtree-decomposition-based integration approach by image compression techniques. In this context, our focus is on unfitted polygonal elements using Wachspress shape functions. In order to assess the performance of the novel integration scheme, we investigate the integration error and the compression rate being related to the reduction in integration points. To this end, the area and the stiffness matrix of a single element are computed using different formulations of the shape functions, i.e., global and local, and partitioning schemes. Finally, the performance of the proposed integration scheme is evaluated by investigating two problems of linear elasticity.eng
dc.description.sponsorshipProjekt DEAL 2020-
dc.language.isoeng-
dc.relation.ispartofhttp://link.springer.com/journal/419-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectFictitious domain methodseng
dc.subjectPolygonal finite element methodeng
dc.subjectPolygonal finite cell methodeng
dc.subjectDiscontinuous integrandseng
dc.subjectCompressed quadtree-decompositioneng
dc.subject.ddc621.8-
dc.titleEnhanced numerical integration scheme based on image compression techniques : application to rational polygonal interpolants-
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-658867-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleArchive of applied mechanics-
local.bibliographicCitation.volume91-
local.bibliographicCitation.pagestart753-
local.bibliographicCitation.pageend775-
local.bibliographicCitation.publishernameSpringer-
local.bibliographicCitation.publisherplaceBerlin-
local.bibliographicCitation.doi10.1007/s00419-020-01772-6-
local.openaccesstrue-
dc.identifier.ppn1734652160-
local.bibliographicCitation.year2021-
cbs.sru.importDate2022-02-10T09:26:01Z-
local.bibliographicCitationEnthalten in Archive of applied mechanics - Berlin : Springer, 1929-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Maschinenbau (OA)

Files in This Item:
File Description SizeFormat 
Petö et al._Enhanced numerical_2021.pdfZweitveröffentlichung1.86 MBAdobe PDFThumbnail
View/Open