Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/71430
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMinakowski, Piotr-
dc.contributor.authorRichter, Thomas-
dc.date.accessioned2022-03-01T13:04:48Z-
dc.date.available2022-03-01T13:04:48Z-
dc.date.issued2020-
dc.date.submitted2020-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/73382-
dc.identifier.urihttp://dx.doi.org/10.25673/71430-
dc.description.abstractWe develop error estimates for the finite element approximation of elliptic partial differential equations on perturbed domains, i.e. when the computational domain does not match the real geometry. The result shows that the error related to the domain can be a dominating factor in the finite element discretization error. The main result consists of H1- and L2-error estimates for the Laplace problem. Theoretical considerations are validated by a computational example.eng
dc.description.sponsorshipProjekt DEAL 2020-
dc.language.isoeng-
dc.relation.ispartofhttp://link.springer.com/journal/10915-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectPerturbed domainseng
dc.subjectFinite elementseng
dc.subjectError estimateseng
dc.subject.ddc510.72-
dc.titleFinite element error estimates on geometrically perturbed domainseng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-733822-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleJournal of scientific computing-
local.bibliographicCitation.volume84-
local.bibliographicCitation.issue2-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend19-
local.bibliographicCitation.publishernameSpringer Science + Business Media B.V.-
local.bibliographicCitation.publisherplaceNew York, NY [u.a.]-
local.bibliographicCitation.doi10.1007/s10915-020-01285-y-
local.openaccesstrue-
dc.identifier.ppn1734676493-
local.bibliographicCitation.year2020-
cbs.sru.importDate2022-03-01T13:00:55Z-
local.bibliographicCitationEnthalten in Journal of scientific computing - New York, NY [u.a.] : Springer Science + Business Media B.V., 1986-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Minakowski et al._Finite_2020.pdfZweitveröffentlichung741.01 kBAdobe PDFThumbnail
View/Open