Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/76535
Full metadata record
DC FieldValueLanguage
dc.contributor.authorApostolova, Iliana N.-
dc.contributor.authorApostolov, Angel T.-
dc.contributor.authorTrimper, Steffen-
dc.contributor.authorWesselinowa, Julia M.-
dc.date.accessioned2022-03-14T08:48:13Z-
dc.date.available2022-03-14T08:48:13Z-
dc.date.issued2021-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/78487-
dc.identifier.urihttp://dx.doi.org/10.25673/76535-
dc.description.abstractDifferent properties of pure and Ni, Zr, and Sm-doped BaFe12O19—bulk and nanoparticles—are investigated using a microscopic model and the Green's function technique. The magnetization 𝑀s increases whereas the coercive field 𝐻c decreases with increasing particle size. The doping leads to a decrease of Ms and the bandgap energy Eg with increasing Zr concentration x due to tensile strain and to an increase of Ms and Eg after Ni doping due to compressive strain as well as due to size effects. The behavior of the spontaneous polarization Ps and the real part ϵ′ of the dielectric constant is opposite. The ϵ′ of a pure BaFe12O19 nanoparticle decreases with increasing magnetic field h. The effects of Sm substitution at Ba or Fe sites on ϵ′ and Ms are also studied.eng
dc.description.sponsorshipPublikationsfonds MLU-
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc530-
dc.titleMultiferroic properties of pure, transition-metal and rare-earth–doped BaFe12O19 nanoparticleseng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitlePhysica status solidi / B-
local.bibliographicCitation.volume258-
local.bibliographicCitation.issue7-
local.bibliographicCitation.publishernameWiley-VCH-
local.bibliographicCitation.publisherplaceWeinheim-
local.bibliographicCitation.doi10.1002/pssb.202100069-
local.openaccesstrue-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU