Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/79517
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPuzyrev, Dmitry-
dc.contributor.authorFischer, David-
dc.contributor.authorHarth, Kirsten-
dc.contributor.authorTrittel, Torsten-
dc.contributor.authorHidalgo, Raúl Cruz-
dc.contributor.authorFalcon, Eric-
dc.contributor.authorNoirhomme, Martial-
dc.contributor.authorOpsomer, Eric-
dc.contributor.authorVandewalle, Nicolas-
dc.contributor.authorGarrabos, Yves-
dc.contributor.authorLecoutre, Carole-
dc.contributor.authorPalencia, Fabien-
dc.contributor.authorStannarius, Ralf-
dc.date.accessioned2022-03-28T12:50:38Z-
dc.date.available2022-03-28T12:50:38Z-
dc.date.issued2021-
dc.date.submitted2021-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/81471-
dc.identifier.urihttp://dx.doi.org/10.25673/79517-
dc.description.abstractGranular multiparticle ensembles are of interest from fundamental statistical viewpoints as well as for the understanding of collective processes in industry and in nature. Extraction of physical data from optical observations of three-dimensional (3D) granular ensembles poses considerable problems. Particle-based tracking is possible only at low volume fractions, not in clusters. We apply shadowbased and feature-tracking methods to analyze the dynamics of granular gases in a container with vibrating side walls under microgravity. In order to validate the reliability of these optical analysis methods, we perform numerical simulations of ensembles similar to the experiment. The simulation output is graphically rendered to mimic the experimentally obtained images. We validate the output of the optical analysis methods on the basis of this ground truth information. This approach provides insight in two interconnected problems: the confirmation of the accuracy of the simulations and the test of the applicability of the visual analysis. The proposed approach can be used for further investigations of dynamical properties of such media, including the granular Leidenfrost effect, granular cooling, and gas-clustering transitions.eng
dc.description.sponsorshipOVGU-Publikationsfonds 2021-
dc.language.isoeng-
dc.relation.ispartofhttps://www.nature.com/srep/-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectVisual analysiseng
dc.subjectDensityeng
dc.subjectVelocity profileseng
dc.subjectGranular gaseseng
dc.subject.ddc530-
dc.titleVisual analysis of density and velocity profiles in dense 3D granular gaseseng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-814713-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleScientific reports-
local.bibliographicCitation.volume11-
local.bibliographicCitation.issue2021-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend12-
local.bibliographicCitation.publishernameMacmillan Publishers Limited, part of Springer Nature-
local.bibliographicCitation.publisherplace[London]-
local.bibliographicCitation.doi10.1038/s41598-021-89949-z-
local.openaccesstrue-
dc.identifier.ppn1761171003-
local.bibliographicCitation.year2021-
cbs.sru.importDate2022-03-28T12:45:24Z-
local.bibliographicCitationEnthalten in Scientific reports - [London] : Macmillan Publishers Limited, part of Springer Nature, 2011-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Naturwissenschaften (OA)

Files in This Item:
File Description SizeFormat 
Puzyrev et al._Visual analysis_2021.pdfZweitveröffentlichung1.89 MBAdobe PDFThumbnail
View/Open