Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/80400
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Handrich, Sebastian | - |
dc.contributor.author | Dinges, Laslo | - |
dc.contributor.author | Hamadi, Ayoub | - |
dc.contributor.author | Werner, Philipp | - |
dc.contributor.author | Saxen, Frerk | - |
dc.contributor.author | Aghbari, Zaher | - |
dc.date.accessioned | 2022-04-01T10:01:14Z | - |
dc.date.available | 2022-04-01T10:01:14Z | - |
dc.date.issued | 2021 | - |
dc.date.submitted | 2021 | - |
dc.identifier.uri | https://opendata.uni-halle.de//handle/1981185920/82354 | - |
dc.identifier.uri | http://dx.doi.org/10.25673/80400 | - |
dc.description.abstract | We address the problem of facial expression analysis. The proposed approach predicts both basic emotion and valence/ arousal values as a continuous measure for the emotional state. Experimental results including cross-database evaluation on the AffectNet, Aff-Wild, and AFEW dataset shows that our approach predicts emotion categories and valence/arousal values with high accuracies and that the simultaneous learning of discrete categories and continuous values improves the prediction of both. In addition, we use our approach to measure the emotional states of users in an Human-Robot-Collaboration scenario (HRC), show how these emotional states are affected by multiple difficulties that arise for the test subjects, and examine how different feedback mechanisms counteract negative emotions users experience while interacting with a robot system. | eng |
dc.description.sponsorship | Projekt DEAL 2020 | - |
dc.language.iso | eng | - |
dc.relation.ispartof | http://link.springer.com/journal/12652 | - |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Facial expression | eng |
dc.subject | Valence | eng |
dc.subject | Arousal | eng |
dc.subject | HRC | eng |
dc.subject | AffectNet | eng |
dc.subject | AFEW | eng |
dc.subject | Aff-Wild | eng |
dc.subject.ddc | 621.3 | - |
dc.title | Simultaneous prediction of valence/arousal and emotion categories and its application in an HRC scenario | eng |
dc.type | Article | - |
dc.identifier.urn | urn:nbn:de:gbv:ma9:1-1981185920-823547 | - |
local.versionType | publishedVersion | - |
local.bibliographicCitation.journaltitle | Journal of ambient intelligence and humanized computing | - |
local.bibliographicCitation.volume | 12 | - |
local.bibliographicCitation.issue | 1 | - |
local.bibliographicCitation.pagestart | 57 | - |
local.bibliographicCitation.pageend | 73 | - |
local.bibliographicCitation.publishername | Springer | - |
local.bibliographicCitation.publisherplace | Berlin | - |
local.bibliographicCitation.doi | 10.1007/s12652-020-02851-w | - |
local.openaccess | true | - |
dc.identifier.ppn | 1793805237 | - |
local.bibliographicCitation.year | 2021 | - |
cbs.sru.importDate | 2022-04-01T09:56:57Z | - |
local.bibliographicCitation | Enthalten in Journal of ambient intelligence and humanized computing - Berlin : Springer, 2010 | - |
local.accessrights.dnb | free | - |
Appears in Collections: | Fakultät für Elektrotechnik und Informationstechnik (OA) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Handrich et al._Simultaneous_2021.pdf | Zweitveröffentlichung | 1.99 MB | Adobe PDF | View/Open |