Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/81181
Full metadata record
DC FieldValueLanguage
dc.contributor.refereePosch, Stefan-
dc.contributor.refereeStadler, Peter F.-
dc.contributor.refereeOhler, Uwe-
dc.contributor.authorGrau, Jan-
dc.date.accessioned2022-04-04T11:11:54Z-
dc.date.available2022-04-04T11:11:54Z-
dc.date.issued2021-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/83136-
dc.identifier.urihttp://dx.doi.org/10.25673/81181-
dc.description.abstractDiese Habilitationsschrift stellt computergestützte Methoden für die regulatorische Genomik, Pflanzen-Pathogen-Interaktionen und die Genvorhersage vor. Dazu wurden erweiterte Bindungsmodelle für Transkriptionsfaktoren und Lernalgorithmen für Hochdurchsatz-Daten entwickelt. Die resultierenden Bindungsmodelle wurden mit weiteren Assays genutzt, um in vivo Bindung vorherzusagen. Zur Vorhersage der Zielgene von transcription activator-like effectors (TALEs) aus pflanzenpathogenen Xanthomonas-Bakterien wurden modulare Modelle aus quantitativen Daten über die TALE-Bindung gelernt. Mit der Software AnnoTALE werden TALE-Gene annotiert, analysiert und gruppiert. Basierend auf AnnoTALE untersuchten wir die TALE-Evolution in Xanthomonas oryzae. In einem neuen Ansatz für die homologie-basierte Genvorhersage nutzten wir, dass Positionen von Exon-Intron-Grenzen evolutionär konserviert sind. Schließlich werden die Jstacs-Bibliothek und eine Erweiterung von ROC und Precision-Recall-Kurven vorgestellt.ger
dc.description.abstractThis thesis presents computational methods for regulatory genomics, plant-pathogen interactions, and gene prediction. We developed advanced models of transcription factor binding and designed algorithms for learning these from high-throughput data. Resulting binding models were combined with further assays to computationally predict in vivo binding. For predicting target genes of transcription activator-like effectors (TALEs) of plant-pathogenic Xanthomonas bacteria, we learned modular models from quantitative data about TALE binding. With the AnnoTALE software, TALE genes are annotated, analysed, and clustered. Based on AnnoTALE, we studied TALE evolution in Xanthomonas oryzae. In a new approach for homology-based gene prediction, we utilized that positions of exon–intron junctions are evolutionary conserved. Finally, the Jstacs library and an extension of ROC and precision-recall curves are presented.eng
dc.format.extent1 Online-Ressource (611 Seiten)-
dc.language.isoeng-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/-
dc.subject.ddc004-
dc.titleComputational methods for predicting patterns in biological sequence dataeng
dcterms.dateAccepted2021-12-07-
dcterms.typeHochschulschrift-
dc.typeHabilitation-
dc.identifier.urnurn:nbn:de:gbv:3:4-1981185920-831365-
local.versionTypepublishedVersion-
local.publisher.universityOrInstitutionMartin-Luther-Universität Halle-Wittenberg-
local.subject.keywordsBioinformatik, regulatorische Genomik, Pflanzen-Pathogen-Interaktionen, Genvorhersage, Transkriptionsfaktoren, Effektorproteine, Xanthomonas-
local.subject.keywordsComputational biology, bioinformatics, regulatory genomics, plant-pathogen interactions, gene prediction, transcription factors, effector proteins, Xanthomonas-
local.openaccesstrue-
dc.identifier.ppn1797311980-
local.publication.countryXA-DE-
cbs.sru.importDate2022-04-04T11:10:03Z-
local.accessrights.dnbfree-
Appears in Collections:Interne-Einreichungen

Files in This Item:
File Description SizeFormat 
habilitationsschrift_grau_online.pdf98.16 MBAdobe PDFThumbnail
View/Open