Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/85383
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHohmann, Urszula-
dc.contributor.authorGhadban, Chalid-
dc.contributor.authorHohmann, Tim-
dc.contributor.authorKleine, Joshua-
dc.contributor.authorSchmidt, Miriam-
dc.contributor.authorScheller, Christian-
dc.contributor.authorStrauss, Christian-
dc.contributor.authorDehghani, Faramarz-
dc.date.accessioned2022-05-05T07:42:03Z-
dc.date.available2022-05-05T07:42:03Z-
dc.date.issued2022-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/87335-
dc.identifier.urihttp://dx.doi.org/10.25673/85383-
dc.description.abstractDuring injuries in the central nervous system, intrinsic protective processes become activated. However, cellular reactions, especially those of glia cells, are frequently unsatisfactory, and further exogenous protective mechanisms are necessary. Nimodipine, a lipophilic L-type calcium channel blocking agent is clinically used in the treatment of aneurysmal subarachnoid haemorrhage with neuroprotective effects in different models. Direct effects of nimodipine on neurons amongst others were observed in the hippocampus as well as its influence on both microglia and astrocytes. Earlier studies proposed that nimodipine protective actions occur not only via calcium channel-mediated vasodilatation but also via further time-dependent mechanisms. In this study, the effect of nimodipine application was investigated in different time frames on neuronal damage in excitotoxically lesioned organotypic hippocampal slice cultures. Nimodipine, but not nifedipine if pre-incubated for 4 h or co-applied with NMDA, was protective, indicating time dependency. Since blood vessels play no significant role in our model, intrinsic brain cell-dependent mechanisms seems to strongly be involved. We also examined the effect of nimodipine and nifedipine on microglia survival. Nimodipine seem to be a promising agent to reduce secondary damage and reduce excitotoxic damage.eng
dc.description.sponsorshipPublikationsfonds MLU-
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc610-
dc.titleNimodipine exerts time-dependent neuroprotective effect after excitotoxical damage in organotypic slice cultureseng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleInternational journal of molecular sciences-
local.bibliographicCitation.volume23-
local.bibliographicCitation.issue6-
local.bibliographicCitation.publishernameMolecular Diversity Preservation International-
local.bibliographicCitation.publisherplaceBasel-
local.bibliographicCitation.doi10.3390/ijms23063331-
local.openaccesstrue-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
ijms-23-03331-v2.pdf3.57 MBAdobe PDFThumbnail
View/Open