Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/86253
Title: CuART : a CUDA-based, scalable Radix-Tree lookup and update engine
Author(s): Koppehel, Martin
Groth, Tobias
Groppe, Sven
Pionteck, Thilo
Issue Date: 2021
Type: Conference object
Language: English
URN: urn:nbn:de:gbv:ma9:1-1981185920-882059
Subjects: In memory databases
Index structures
Databases
Radix trees
ART
Abstract: In this work we present an optimized version of the Adaptive Radix Tree (ART) index structure for GPUs. We analyze an existing GPU implementation of ART (GRT), identify bottlenecks and present an optimized data structure and layout to improve the lookup and update performance. We show that our implementation outperforms the existing approach by a factor up to 2 times for lookups and up to 10 times for updates using the same GPU. We also show that the sequential memory layout presented here is beneficial for lookup-intensive workloads on the CPU, outperforming the ART by up to 10 times. We analyze the impact of the memory architecture of the GPU, where it becomes visible that traditional GDDR6(X) is beneficial for the index lookups due to the faster clock rates compared to High Bandwidth Memory (HBM).
URI: https://opendata.uni-halle.de//handle/1981185920/88205
http://dx.doi.org/10.25673/86253
Open Access: Open access publication
License: (CC BY-SA 4.0) Creative Commons Attribution ShareAlike 4.0(CC BY-SA 4.0) Creative Commons Attribution ShareAlike 4.0
Sponsor/Funder: Transformationsvertrag
Appears in Collections:Fakultät für Elektrotechnik und Informationstechnik (OA)

Files in This Item:
File Description SizeFormat 
Koppehel et al._CuART_2021.pdfZweitveröffentlichung4.19 MBAdobe PDFThumbnail
View/Open