Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/96506
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorNazarenko, Lidiia-
dc.contributor.authorGlüge, Rainer-
dc.contributor.authorAltenbach, Holm-
dc.date.accessioned2022-12-15T09:26:43Z-
dc.date.available2022-12-15T09:26:43Z-
dc.date.issued2021-
dc.date.submitted2021-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/98463-
dc.identifier.urihttp://dx.doi.org/10.25673/96506-
dc.description.abstractThe inverse Hooke’s law and complementary strain energy density has been examined in the context of the theory of coupled gradient elasticity for second gradient materials. To this end, it was assumed that the potential energy density is a quadratic form of the strain and of the second gradient of displacement. Existence of the coupling term significantly complicates the problem. To avoid this complication the equation for the potential energy density was transformed in order to present it as an uncoupled quadratic form of a modified strain and the second gradient of displacement or of the strain and a modified second gradient of displacement. These transformations, which is in essence a blockmatrix diagonalization, lead to a decoupling of strains and strain gradient in the potential energy density andmakes it possible to determine tensorial relations for the compliance tensors of fourth-, fifth- , and sixth-rank. Both modifications result in the same compliance tensors and are valid for an arbitrary material symmetry class. In the case of hemitropic materials, the compliance tensors have the same symmetry and the same form as the stiffness tensors and are characterized by eight independent constants, namely the two classical isotropic constants, five constants in the strain gradient part and one constant in the coupling term. Explicit expressions for these eight parameters are obtained from the tensorial relations for the compliance tensors and are compared with the direct solution of a linear system for the compliance’s. All three solutions are identical, what we consider as a verification of the presented results.eng
dc.description.sponsorshipProjekt DEAL 2021-
dc.language.isoeng-
dc.relation.ispartof10.1002/(ISSN)1521-4001-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectStrain gradient elasticityeng
dc.subjectCoupling fifth-rank tensoreng
dc.subjectComplementary energyeng
dc.subject.ddc621.8-
dc.titleInverse Hooke's law and complementary strain energy in coupled strain gradient elasticityeng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-984637-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleZAMM-
local.bibliographicCitation.volume101-
local.bibliographicCitation.issue9-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend11-
local.bibliographicCitation.publishernameWiley-VCH-
local.bibliographicCitation.publisherplaceBerlin-
local.bibliographicCitation.doi10.1002/zamm.202100005-
local.openaccesstrue-
dc.identifier.ppn1753948126-
local.bibliographicCitation.year2021-
cbs.sru.importDate2022-12-15T09:23:28Z-
local.bibliographicCitationEnthalten in ZAMM - Berlin : Wiley-VCH, 1921-
local.accessrights.dnbfree-
Enthalten in den Sammlungen:Fakultät für Maschinenbau (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Nazarenko et al._Inverse Hooke s law_2021.pdfZweitveröffentlichung265.6 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen