Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/97327
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHoerner, Stefan-
dc.contributor.authorAbbaszadeh, Shokoofeh-
dc.contributor.authorCleynen, Olivier-
dc.contributor.authorBonamy, Cyrille-
dc.contributor.authorMaître, Thierry-
dc.contributor.authorThévenin, Dominique-
dc.date.accessioned2023-01-16T09:39:05Z-
dc.date.available2023-01-16T09:39:05Z-
dc.date.issued2021-
dc.date.submitted2021-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/99283-
dc.identifier.urihttp://dx.doi.org/10.25673/97327-
dc.description.abstractState-of-the-art technologies for wind and tidal energy exploitation focus mostly on axial turbines. However, cross-flow hydrokinetic tidal turbines possess interesting features, such as higher area-based power density in array installations and shallow water, as well as a generally simpler design. Up to now, the highly unsteady flow conditions and cyclic blade stall have hindered deployment at large scales because of the resulting low single-turbine efficiency and fatigue failure challenges. Concepts exist which overcome these drawbacks by actively controlling the flow, at the cost of increased mechatronical complexity. Here, we propose a bioinspired approach with hyperflexible turbine blades. The rotor naturally adapts to the flow through deformation, reducing flow separation and stall in a passive manner. This results in higher efficiency and increased turbine lifetime through decreased structural loads, without compromising on the simplicity of the design.eng
dc.description.sponsorshipProjekt DEAL 2021-
dc.language.isoeng-
dc.relation.ispartofhttp://link.springer.com/journal/348-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectPassive flow control mechanismseng
dc.subjectCross‑flow tidal turbineseng
dc.subjectbioinspired flexible bladeseng
dc.subject.ddc660-
dc.titlePassive flow control mechanisms with bioinspired flexible blades in cross-flow tidal turbineseng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-992834-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleExperiments in fluids-
local.bibliographicCitation.volume62-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend14-
local.bibliographicCitation.publishernameSpringer-
local.bibliographicCitation.publisherplaceBerlin-
local.bibliographicCitation.doi10.1007/s00348-021-03186-8-
local.openaccesstrue-
dc.identifier.ppn1767857489-
local.bibliographicCitation.year2021-
cbs.sru.importDate2023-01-16T09:31:14Z-
local.bibliographicCitationEnthalten in Experiments in fluids - Berlin : Springer, 1983-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Verfahrens- und Systemtechnik (OA)

Files in This Item:
File Description SizeFormat 
Hoerner et al._Passive flow_2021.pdfZweitveröffentlichung2.55 MBAdobe PDFThumbnail
View/Open