Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/101546
Titel: Providing laypeople with results from dynamic infectious disease modelling studies affects their allocation preference for scarce medical resources-a factorial experiment
Autor(en): Rübsamen, Nicole
Garcia Voges, Benno
Castell, StefanieIn der Gemeinsamen Normdatei der DNB nachschlagen
Klett-Tammen, Carolina Judith
Oppliger, Jérôme
Krütli, PiusIn der Gemeinsamen Normdatei der DNB nachschlagen
Smieszek, Timo
Mikolajczyk, RafaelIn der Gemeinsamen Normdatei der DNB nachschlagen
Karch, André
Erscheinungsdatum: 2022
Art: Artikel
Sprache: Englisch
Zusammenfassung: Background: Allocation of scarce medical resources can be based on different principles. It has not yet been investigated which allocation schemes are preferred by medical laypeople in a particular situation of medical scarcity like an emerging infectious disease and how the choices are affected by providing information about expected population-level effects of the allocation scheme based on modelling studies. We investigated the potential benefit of strategic communication of infectious disease modelling results. Methods: In a two-way factorial experiment (n = 878 participants), we investigated if prognosis of the disease or information about expected effects on mortality at population-level (based on dynamic infectious disease modelling studies) influenced the choice of preferred allocation schemes for prevention and treatment of an unspecified sexually transmitted infection. A qualitative analysis of the reasons for choosing specific allocation schemes supplements our results. Results: Presence of the factor “information about the population-level effects of the allocation scheme” substantially increased the probability of choosing a resource allocation system that minimized overall harm among the population, while prognosis did not affect allocation choices. The main reasons for choosing an allocation scheme differed among schemes, but did not differ among those who received additional model-based information on expected population-level effects and those who did not. Conclusions: Providing information on the expected population-level effects from dynamic infectious disease modelling studies resulted in a substantially different choice of allocation schemes. This finding supports the importance of incorporating model-based information in decision-making processes and communication strategies.
URI: https://opendata.uni-halle.de//handle/1981185920/103504
http://dx.doi.org/10.25673/101546
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: BMC public health
Verlag: BioMed Central
Verlagsort: London
Band: 22
Originalveröffentlichung: 10.1186/s12889-022-13000-7
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s12889-022-13000-7.pdf1.63 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen