Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/101556
Title: | Atomic scale control of spin current transmission at interfaces |
Author(s): | Wahada, Mohamed Amine Şas̜ıoğlu, Ersoy Hoppe, Wolfgang Zhou, Xilin Deniz, Hakan Rouzegar, Reza Kampfrath, Tobias Mertig, Ingrid Parkin, Stuart S. P. Woltersdorf, Georg |
Issue Date: | 2022 |
Type: | Article |
Language: | English |
Abstract: | Ferromagnet/heavy metal bilayers represent a central building block for spintronic devices where the magnetization of the ferromagnet can be controlled by spin currents generated in the heavy metal. The efficiency of spin current generation is paramount. Equally important is the efficient transfer of this spin current across the ferromagnet/heavy metal interface. Here, we show theoretically and experimentally that for Ta as heavy metal the interface only partially transmits the spin current while this effect is absent when Pt is used as heavy metal. This is due to magnetic moment reduction at the interface caused by 3d–5d hybridization effects. We show that this effect can be avoided by atomically thin interlayers. On the basis of our theoretical model we conclude that this is a general effect and occurs for all 5d metals with less than half-filled 5d shell. |
URI: | https://opendata.uni-halle.de//handle/1981185920/103514 http://dx.doi.org/10.25673/101556 |
Open Access: | Open access publication |
License: | (CC BY-NC-ND 4.0) Creative Commons Attribution NonCommercial NoDerivatives 4.0 |
Journal Title: | Nano letters |
Publisher: | ACS Publ. |
Publisher Place: | Washington, DC |
Volume: | 22 |
Issue: | 9 |
Original Publication: | 10.1021/acs.nanolett.1c04358 |
Page Start: | 3539 |
Page End: | 3544 |
Appears in Collections: | Open Access Publikationen der MLU |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
acs.nanolett.1c04358.pdf | 1.55 MB | Adobe PDF | View/Open |