Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/101684
Title: Cryo-EM structure of the SEA complex
Author(s): Tafur, LucasLook up in the Integrated Authority File of the German National Library
Hinterndorfer, Kerstin
Gabus, Caroline
Lamanna, Chiara
Bergmann, Ariane
Sadian, YasharLook up in the Integrated Authority File of the German National Library
Hamdi, Farzad
Kyrilis, Fotis L.
Kastritis, Panagiotis L.Look up in the Integrated Authority File of the German National Library
Loewith, Robbie
Issue Date: 2022
Type: Article
Language: English
Abstract: The SEA complex (SEAC) is a growth regulator that acts as a GTPase-activating protein (GAP) towards Gtr1, a Rag GTPase that relays nutrient status to the Target of Rapamycin Complex 1 (TORC1) in yeast1. Functionally, the SEAC has been divided into two subcomplexes: SEACIT, which has GAP activity and inhibits TORC1, and SEACAT, which regulates SEACIT2. This system is conserved in mammals: the GATOR complex, consisting of GATOR1 (SEACIT) and GATOR2 (SEACAT), transmits amino acid3 and glucose4 signals to mTORC1. Despite its importance, the structure of SEAC/GATOR, and thus molecular understanding of its function, is lacking. Here, we solve the cryo-EM structure of the native eight-subunit SEAC. The SEAC has a modular structure in which a COPII-like cage corresponding to SEACAT binds two flexible wings, which correspond to SEACIT. The wings are tethered to the core via Sea3, which forms part of both modules. The GAP mechanism of GATOR1 is conserved in SEACIT, and GAP activity is unaffected by SEACAT in vitro. In vivo, the wings are essential for recruitment of the SEAC to the vacuole, primarily via the EGO complex. Our results indicate that rather than being a direct inhibitor of SEACIT, SEACAT acts as a scaffold for the binding of TORC1 regulators.
URI: https://opendata.uni-halle.de//handle/1981185920/103631
http://dx.doi.org/10.25673/101684
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Journal Title: Nature <London>
Publisher: Nature Publ. Group
Publisher Place: London [u.a.]
Volume: 611
Issue: 7935
Original Publication: 10.1038/s41586-022-05370-0
Page Start: 399
Page End: 404
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
s41586-022-05370-0.pdf26.04 MBAdobe PDFThumbnail
View/Open