Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/101899
Titel: Applying generic landscape-scale models of natural pest control to real data : associations between crops, pests and biocontrol agents make the difference
Autor(en): Bonato, Marta
Martin, Emily A.
Cord, Anna F.
Seppelt, RalfIn der Gemeinsamen Normdatei der DNB nachschlagen
Beckmann, Michael
Strauch, MichaelIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2023
Art: Artikel
Sprache: Englisch
Zusammenfassung: Managing agricultural land to maximize the supply of natural pest control can help reduce pesticide use. Tools that are able to represent the relationship between landscape structure, field management and natural pest control can help in deciding which management practices should be used and where. However, the reliability and the predictive power of generic models of natural pest control is largely unknown. We applied an existing generic model of natural pest control potential based on landscape structure to nine sites in five European countries and tested the resulting values against field measurements of natural pest control. Subsequently, we added information on local level factors to test the possibility of improving model performance and predictive power. The results showed that there is generally little or no evidence of correlation between modeled and field-measured values of natural pest control. Moreover, we found high variability in the results, depending on the associations of crops, pests and biocontrol agents considered (e.g. Oilseed rape-Pollen beetle-Parasitoids) and on the different case studies. Factors at the local level, such as conservation tillage, had an overall positive effect on natural pest control, and their inclusion in the models typically increased their predictive power. Our results underline the importance of developing predictive models of natural pest control which are tailored towards specific associations between crops, pests and biocontrol agents, consider local level factors and are trained using field measurements. They would serve as important tools within farmers' decision making, ultimately supporting the shift toward a low-pesticide agriculture.
URI: https://opendata.uni-halle.de//handle/1981185920/103850
http://dx.doi.org/10.25673/101899
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Agriculture, ecosystems & environment
Verlag: Elsevier
Verlagsort: Amsterdam [u.a.]
Band: 342
Originalveröffentlichung: 10.1016/j.agee.2022.108215
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
1-s2.0-S0167880922003644-main.pdf3.79 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen