Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/102790
Titel: The undetectability of global biodiversity trends using local species richness
Autor(en): Valdez, Jose W.
Callaghan, Corey T.
Junker, JessicaIn der Gemeinsamen Normdatei der DNB nachschlagen
Purvis, AndyIn der Gemeinsamen Normdatei der DNB nachschlagen
Hill, Samantha L. L.
Pereira, Henrique M.In der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2023
Art: Artikel
Sprache: Englisch
Zusammenfassung: Although species are being lost at alarming rates, previous research has provided conflicting results on the extent and even direction of global biodiversity change at the local scale. Here, we assessed the ability to detect global biodiversity trends using local species richness and how it is affected by the number of monitoring sites, sampling interval (i.e. time between original survey and re-survey of the site), measurement error (error of the measurement of the local species richness), spatial grain of monitoring (a proxy for the taxa mobility) and spatial sampling biases (i.e. site-selection biases). We use PREDICTS model-based estimates as a proxy for the real-world distribution of biodiversity and randomly selected monitoring sites to calculate local species richness trends. We found that while a monitoring network with hundreds of sites could detect global change in species richness within a 30-year period, the number of sites for detecting trends doubled for a decade, increased 10-fold within three years and yearly trends were undetectable. Measurement errors had a non-linear effect on statistical power, with a 1% error reducing statistical power by a slight margin and a 5% error drastically reducing the power to reliably detect any trend. The ability to detect global change in local species richness was also related to spatial grain, making it harder to detect trends for sites sampled at smaller plot sizes. Spatial sampling biases not only reduced the ability to detect negative global biodiversity trends but sometimes yielded positive trends. We conclude that detecting accurate global biodiversity trends using local richness may simply be unfeasible with current approaches. We suggest that monitoring a representative network of sites implemented at the national level, combined with models accounting for errors and biases, can help improve our understanding of global biodiversity change.
URI: https://opendata.uni-halle.de//handle/1981185920/104743
http://dx.doi.org/10.25673/102790
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 3.0) Creative Commons Namensnennung 3.0 Unported(CC BY 3.0) Creative Commons Namensnennung 3.0 Unported
Journal Titel: Ecography
Verlag: Wiley-Blackwell
Verlagsort: Oxford [u.a.]
Heft: 3
Originalveröffentlichung: 10.1111/ecog.06604
Seitenanfang: 1
Seitenende: 14
Enthalten in den Sammlungen:Open Access Publikationen der MLU